International journal of neural systems最新文献

筛选
英文 中文
Precise Localization for Anatomo-Physiological Hallmarks of the Cervical Spine by Using Neural Memory Ordinary Differential Equation. 利用神经记忆常微分方程精确定位颈椎的解剖生理特征
International journal of neural systems Pub Date : 2024-12-01 Epub Date: 2024-07-25 DOI: 10.1142/S0129065724500564
Xi Zheng, Yi Yang, Dehan Li, Yi Deng, Yuexiong Xie, Zhang Yi, Litai Ma, Lei Xu
{"title":"Precise Localization for Anatomo-Physiological Hallmarks of the Cervical Spine by Using Neural Memory Ordinary Differential Equation.","authors":"Xi Zheng, Yi Yang, Dehan Li, Yi Deng, Yuexiong Xie, Zhang Yi, Litai Ma, Lei Xu","doi":"10.1142/S0129065724500564","DOIUrl":"10.1142/S0129065724500564","url":null,"abstract":"<p><p>In the evaluation of cervical spine disorders, precise positioning of anatomo-physiological hallmarks is fundamental for calculating diverse measurement metrics. Despite the fact that deep learning has achieved impressive results in the field of keypoint localization, there are still many limitations when facing medical image. First, these methods often encounter limitations when faced with the inherent variability in cervical spine datasets, arising from imaging factors. Second, predicting keypoints for only 4% of the entire X-ray image surface area poses a significant challenge. To tackle these issues, we propose a deep neural network architecture, NF-DEKR, specifically tailored for predicting keypoints in cervical spine physiological anatomy. Leveraging neural memory ordinary differential equation with its distinctive memory learning separation and convergence to a singular global attractor characteristic, our design effectively mitigates inherent data variability. Simultaneously, we introduce a Multi-Resolution Focus module to preprocess feature maps before entering the disentangled regression branch and the heatmap branch. Employing a differentiated strategy for feature maps of varying scales, this approach yields more accurate predictions of densely localized keypoints. We construct a medical dataset, SCUSpineXray, comprising X-ray images annotated by orthopedic specialists and conduct similar experiments on the publicly available UWSpineCT dataset. Experimental results demonstrate that compared to the baseline DEKR network, our proposed method enhances average precision by 2% to 3%, accompanied by a marginal increase in model parameters and the floating-point operations (FLOPs). The code (https://github.com/Zhxyi/NF-DEKR) is available.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450056"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 2024 Hojjat Adeli Award for Outstanding Contributions in Neural Systems. 公告:2024 年霍贾特-阿德利神经系统杰出贡献奖。
International journal of neural systems Pub Date : 2024-12-01 Epub Date: 2024-09-23 DOI: 10.1142/S012906572482001X
Han Sun
{"title":"The 2024 Hojjat Adeli Award for Outstanding Contributions in Neural Systems.","authors":"Han Sun","doi":"10.1142/S012906572482001X","DOIUrl":"10.1142/S012906572482001X","url":null,"abstract":"","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2482001"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Lightweight Convolutional Neural Network-Reformer Model for Efficient Epileptic Seizure Detection. 用于高效癫痫发作检测的轻量级卷积神经网络-重构器模型
International journal of neural systems Pub Date : 2024-12-01 Epub Date: 2024-09-30 DOI: 10.1142/S0129065724500655
Haozhou Cui, Xiangwen Zhong, Haotian Li, Chuanyu Li, Xingchen Dong, Dezan Ji, Landi He, Weidong Zhou
{"title":"A Lightweight Convolutional Neural Network-Reformer Model for Efficient Epileptic Seizure Detection.","authors":"Haozhou Cui, Xiangwen Zhong, Haotian Li, Chuanyu Li, Xingchen Dong, Dezan Ji, Landi He, Weidong Zhou","doi":"10.1142/S0129065724500655","DOIUrl":"10.1142/S0129065724500655","url":null,"abstract":"<p><p>A real-time and reliable automatic detection system for epileptic seizures holds significant value in assisting physicians with rapid diagnosis and treatment of epilepsy. Aiming to address this issue, a novel lightweight model called Convolutional Neural Network-Reformer (CNN-Reformer) is proposed for seizure detection on long-term EEG. The CNN-Reformer consists of two main parts: the Data Reshaping (DR) module and the Efficient Attention and Concentration (EAC) module. This framework reduces network parameters while retaining effective feature extraction of multi-channel EEGs, thereby improving model computational efficiency and real-time performance. Initially, the raw EEG signals undergo Discrete Wavelet Transform (DWT) for signal filtering, and then fed into the DR module for data compression and reshaping while preserving local features. Subsequently, these local features are sent to the EAC module to extract global features and perform categorization. Post-processing involving sliding window averaging, thresholding, and collar techniques is further deployed to reduce the false detection rate (FDR) and improve detection performance. On the CHB-MIT scalp EEG dataset, our method achieves an average sensitivity of 97.57%, accuracy of 98.09%, and specificity of 98.11% at segment-based level, and a sensitivity of 96.81%, along with FDR of 0.27/h, and latency of 17.81 s at the event-based level. On the SH-SDU dataset we collected, our method yielded segment-based sensitivity of 94.51%, specificity of 92.83%, and accuracy of 92.81%, along with event-based sensitivity of 94.11%. The average testing time for 1[Formula: see text]h of multi-channel EEG signals is 1.92[Formula: see text]s. The excellent results and fast computational speed of the CNN-Reformer model demonstrate its potential for efficient seizure detection.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450065"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Referring Image Segmentation with Multi-Modal Feature Interaction and Alignment Based on Convolutional Nonlinear Spiking Neural Membrane Systems. 基于卷积非线性尖峰神经膜系统的多模态特征交互和对齐的参考图像分割。
International journal of neural systems Pub Date : 2024-12-01 Epub Date: 2024-09-23 DOI: 10.1142/S0129065724500643
Siyan Sun, Peng Wang, Hong Peng, Zhicai Liu
{"title":"Referring Image Segmentation with Multi-Modal Feature Interaction and Alignment Based on Convolutional Nonlinear Spiking Neural Membrane Systems.","authors":"Siyan Sun, Peng Wang, Hong Peng, Zhicai Liu","doi":"10.1142/S0129065724500643","DOIUrl":"10.1142/S0129065724500643","url":null,"abstract":"<p><p>Referring image segmentation aims to accurately align image pixels and text features for object segmentation based on natural language descriptions. This paper proposes NSNPRIS (convolutional nonlinear spiking neural P systems for referring image segmentation), a novel model based on convolutional nonlinear spiking neural P systems. NSNPRIS features NSNPFusion and Language Gate modules to enhance feature interaction during encoding, along with an NSNPDecoder for feature alignment and decoding. Experimental results on RefCOCO, RefCOCO[Formula: see text], and G-Ref datasets demonstrate that NSNPRIS performs better than mainstream methods. Our contributions include advances in the alignment of pixel and textual features and the improvement of segmentation accuracy.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450064"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SATEER: Subject-Aware Transformer for EEG-Based Emotion Recognition. SATEER:基于脑电图的情感识别主体感知变换器。
International journal of neural systems Pub Date : 2024-11-20 DOI: 10.1142/S0129065725500029
Romeo Lanzino, Danilo Avola, Federico Fontana, Luigi Cinque, Francesco Scarcello, Gian Luca Foresti
{"title":"SATEER: Subject-Aware Transformer for EEG-Based Emotion Recognition.","authors":"Romeo Lanzino, Danilo Avola, Federico Fontana, Luigi Cinque, Francesco Scarcello, Gian Luca Foresti","doi":"10.1142/S0129065725500029","DOIUrl":"10.1142/S0129065725500029","url":null,"abstract":"<p><p>This study presents a Subject-Aware Transformer-based neural network designed for the Electroencephalogram (EEG) Emotion Recognition task (SATEER), which entails the analysis of EEG signals to classify and interpret human emotional states. SATEER processes the EEG waveforms by transforming them into Mel spectrograms, which can be seen as particular cases of images with the number of channels equal to the number of electrodes used during the recording process; this type of data can thus be processed using a Computer Vision pipeline. Distinct from preceding approaches, this model addresses the variability in individual responses to identical stimuli by incorporating a User Embedder module. This module enables the association of individual profiles with their EEGs, thereby enhancing classification accuracy. The efficacy of the model was rigorously evaluated using four publicly available datasets, demonstrating superior performance over existing methods in all conducted benchmarks. For instance, on the AMIGOS dataset (A dataset for Multimodal research of affect, personality traits, and mood on Individuals and GrOupS), SATEER's accuracy exceeds 99.8% accuracy across all labels and showcases an improvement of 0.47% over the state of the art. Furthermore, an exhaustive ablation study underscores the pivotal role of the User Embedder module and each other component of the presented model in achieving these advancements.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550002"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Motor Imagery Classification with Residual Graph Convolutional Networks and Multi-Feature Fusion. 利用残差图卷积网络和多特征融合增强运动图像分类能力
International journal of neural systems Pub Date : 2024-11-19 DOI: 10.1142/S0129065724500692
Fangzhou Xu, Weiyou Shi, Chengyan Lv, Yuan Sun, Shuai Guo, Chao Feng, Yang Zhang, Tzyy-Ping Jung, Jiancai Leng
{"title":"Enhancing Motor Imagery Classification with Residual Graph Convolutional Networks and Multi-Feature Fusion.","authors":"Fangzhou Xu, Weiyou Shi, Chengyan Lv, Yuan Sun, Shuai Guo, Chao Feng, Yang Zhang, Tzyy-Ping Jung, Jiancai Leng","doi":"10.1142/S0129065724500692","DOIUrl":"10.1142/S0129065724500692","url":null,"abstract":"<p><p>Stroke, an abrupt cerebrovascular ailment resulting in brain tissue damage, has prompted the adoption of motor imagery (MI)-based brain-computer interface (BCI) systems in stroke rehabilitation. However, analyzing electroencephalogram (EEG) signals from stroke patients poses challenges. To address the issues of low accuracy and efficiency in EEG classification, particularly involving MI, the study proposes a residual graph convolutional network (M-ResGCN) framework based on the modified <i>S</i>-transform (MST), and introduces the self-attention mechanism into residual graph convolutional network (ResGCN). This study uses MST to extract EEG time-frequency domain features, derives spatial EEG features by calculating the absolute Pearson correlation coefficient (aPcc) between channels, and devises a method to construct the adjacency matrix of the brain network using aPcc to measure the strength of the connection between channels. Experimental results involving 16 stroke patients and 16 healthy subjects demonstrate significant improvements in classification quality and robustness across tests and subjects. The highest classification accuracy reached 94.91% and a Kappa coefficient of 0.8918. The average accuracy and <i>F</i>1 scores from 10 times 10-fold cross-validation are 94.38% and 94.36%, respectively. By validating the feasibility and applicability of brain networks constructed using the aPcc in EEG signal analysis and feature encoding, it was established that the aPcc effectively reflects overall brain activity. The proposed method presents a novel approach to exploring channel relationships in MI-EEG and improving classification performance. It holds promise for real-time applications in MI-based BCI systems.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450069"},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Modified Transformer Network for Seizure Detection Using EEG Signals. 利用脑电信号检测癫痫发作的改良变压器网络
International journal of neural systems Pub Date : 2024-11-19 DOI: 10.1142/S0129065725500030
Wenrong Hu, Juan Wang, Feng Li, Daohui Ge, Yuxia Wang, Qingwei Jia, Shasha Yuan
{"title":"A Modified Transformer Network for Seizure Detection Using EEG Signals.","authors":"Wenrong Hu, Juan Wang, Feng Li, Daohui Ge, Yuxia Wang, Qingwei Jia, Shasha Yuan","doi":"10.1142/S0129065725500030","DOIUrl":"10.1142/S0129065725500030","url":null,"abstract":"<p><p>Seizures have a serious impact on the physical function and daily life of epileptic patients. The automated detection of seizures can assist clinicians in taking preventive measures for patients during the diagnosis process. The combination of deep learning (DL) model with convolutional neural network (CNN) and transformer network can effectively extract both local and global features, resulting in improved seizure detection performance. In this study, an enhanced transformer network named Inresformer is proposed for seizure detection, which is combined with Inception and Residual network extracting different scale features of electroencephalography (EEG) signals to enrich the feature representation. In addition, the improved transformer network replaces the existing Feedforward layers with two half-step Feedforward layers to enhance the nonlinear representation of the model. The proposed architecture utilizes discrete wavelet transform (DWT) to decompose the original EEG signals, and the three sub-bands are selected for signal reconstruction. Then, the Co-MixUp method is adopted to solve the problem of data imbalance, and the processed signals are sent to the Inresformer network for seizure information capture and recognition. Finally, discriminant fusion is performed on the results of three-scale EEG sub-signals to achieve final seizure recognition. The proposed network achieves the best accuracy of 100% on Bonn dataset and the average accuracy of 98.03%, sensitivity of 95.65%, and specificity of 98.57% on the long-term CHB-MIT dataset. Compared to the existing DL networks, the proposed method holds significant potential for clinical research and diagnosis applications with competitive performance.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550003"},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning Recognition of Paroxysmal Kinesigenic Dyskinesia Based on EEG Functional Connectivity. 基于脑电图功能连接性的阵发性运动障碍深度学习识别。
International journal of neural systems Pub Date : 2024-11-19 DOI: 10.1142/S0129065725500017
Liang Zhao, Renling Zou, Linpeng Jin
{"title":"Deep Learning Recognition of Paroxysmal Kinesigenic Dyskinesia Based on EEG Functional Connectivity.","authors":"Liang Zhao, Renling Zou, Linpeng Jin","doi":"10.1142/S0129065725500017","DOIUrl":"10.1142/S0129065725500017","url":null,"abstract":"<p><p>Paroxysmal kinesigenic dyskinesia (PKD) is a rare neurological disorder marked by transient involuntary movements triggered by sudden actions. Current diagnostic approaches, including genetic screening, face challenges in identifying secondary cases due to symptom overlap with other disorders. This study introduces a novel PKD recognition method utilizing a resting-state electroencephalogram (EEG) functional connectivity matrix and a deep learning architecture (AT-1CBL). Resting-state EEG data from 44 PKD patients and 44 healthy controls (HCs) were collected using a 128-channel EEG system. Functional connectivity matrices were computed and transformed into graph data to examine brain network property differences between PKD patients and controls through graph theory. Source localization was conducted to explore neural circuit differences in patients. The AT-1CBL model, integrating 1D-CNN and Bi-LSTM with attentional mechanisms, achieved a classification accuracy of 93.77% on phase lag index (PLI) features in the Theta band. Graph theoretic analysis revealed significant phase synchronization impairments in the Theta band of the functional brain network in PKD patients, particularly in the distribution of weak connections compared to HCs. Source localization analyses indicated greater differences in functional connectivity in sensorimotor regions and the frontal-limbic system in PKD patients, suggesting abnormalities in motor integration related to clinical symptoms. This study highlights the potential of deep learning models based on EEG functional connectivity for accurate and cost-effective PKD diagnosis, supporting the development of portable EEG devices for clinical monitoring and diagnosis. However, the limited dataset size may affect generalizability, and further exploration of multimodal data integration and advanced deep learning architectures is necessary to enhance the robustness of PKD diagnostic models.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550001"},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding Continuous Tracking Eye Movements from Cortical Spiking Activity. 从皮层尖峰活动解码连续跟踪眼球运动
International journal of neural systems Pub Date : 2024-11-15 DOI: 10.1142/S0129065724500709
Kendra K Noneman, J Patrick Mayo
{"title":"Decoding Continuous Tracking Eye Movements from Cortical Spiking Activity.","authors":"Kendra K Noneman, J Patrick Mayo","doi":"10.1142/S0129065724500709","DOIUrl":"https://doi.org/10.1142/S0129065724500709","url":null,"abstract":"<p><p>Eye movements are the primary way primates interact with the world. Understanding how the brain controls the eyes is therefore crucial for improving human health and designing visual rehabilitation devices. However, brain activity is challenging to decipher. Here, we leveraged machine learning algorithms to reconstruct tracking eye movements from high-resolution neuronal recordings. We found that continuous eye position could be decoded with high accuracy using spiking data from only a few dozen cortical neurons. We tested eight decoders and found that neural network models yielded the highest decoding accuracy. Simpler models performed well above chance with a substantial reduction in training time. We measured the impact of data quantity (e.g. number of neurons) and data format (e.g. bin width) on training time, inference time, and generalizability. Training models with more input data improved performance, as expected, but the format of the behavioral output was critical for emphasizing or omitting specific oculomotor events. Our results provide the first demonstration, to our knowledge, of continuously decoded eye movements across a large field of view. Our comprehensive investigation of predictive power and computational efficiency for common decoder architectures provides a much-needed foundation for future work on real-time gaze-tracking devices.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450070"},"PeriodicalIF":0.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Delayed Spiking Neural Membrane System for Adaptive Nearest Neighbor-Based Density Peak Clustering. 基于密度峰聚类的自适应近邻延迟尖峰神经膜系统
International journal of neural systems Pub Date : 2024-10-01 Epub Date: 2024-07-06 DOI: 10.1142/S0129065724500503
Qianqian Ren, Lianlian Zhang, Shaoyi Liu, Jin-Xing Liu, Junliang Shang, Xiyu Liu
{"title":"A Delayed Spiking Neural Membrane System for Adaptive Nearest Neighbor-Based Density Peak Clustering.","authors":"Qianqian Ren, Lianlian Zhang, Shaoyi Liu, Jin-Xing Liu, Junliang Shang, Xiyu Liu","doi":"10.1142/S0129065724500503","DOIUrl":"10.1142/S0129065724500503","url":null,"abstract":"<p><p>Although the density peak clustering (DPC) algorithm can effectively distribute samples and quickly identify noise points, it lacks adaptability and cannot consider the local data structure. In addition, clustering algorithms generally suffer from high time complexity. Prior research suggests that clustering algorithms grounded in P systems can mitigate time complexity concerns. Within the realm of membrane systems (P systems), spiking neural P systems (SN P systems), inspired by biological nervous systems, are third-generation neural networks that possess intricate structures and offer substantial parallelism advantages. Thus, this study first improved the DPC by introducing the maximum nearest neighbor distance and K-nearest neighbors (KNN). Moreover, a method based on delayed spiking neural P systems (DSN P systems) was proposed to improve the performance of the algorithm. Subsequently, the DSNP-ANDPC algorithm was proposed. The effectiveness of DSNP-ANDPC was evaluated through comprehensive evaluations across four synthetic datasets and 10 real-world datasets. The proposed method outperformed the other comparison methods in most cases.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450050"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信