生物学上似是而非的基于snn的联想记忆与上下文相关的Hebbian连接。

IF 6.4
International journal of neural systems Pub Date : 2025-11-01 Epub Date: 2025-04-16 DOI:10.1142/S0129065725500273
S Yu Makovkin, S Yu Gordleeva, I A Kastalskiy
{"title":"生物学上似是而非的基于snn的联想记忆与上下文相关的Hebbian连接。","authors":"S Yu Makovkin, S Yu Gordleeva, I A Kastalskiy","doi":"10.1142/S0129065725500273","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a spiking neural network model with Hebbian connectivity for implementing energy-efficient associative memory, whose activity is determined by input stimuli. The model consists of three interacting layers of Hodgkin-Huxley-Mainen spiking neurons with excitatory and inhibitory synaptic connections. Information patterns are stored in memory using a symmetric Hebbian matrix and can be retrieved in response to a specific stimulus pattern. Binary images are encoded using in-phase and anti-phase oscillations relative to a global clock signal. Utilizing the phase-locking effect allows for cluster synchronization of neurons (both on the input and output layers). Interneurons in the intermediate layer filter signal propagation pathways depending on the context of the input layer, effectively engaging only a portion of the synaptic connections within the Hebbian matrix for recognition. The stability of the oscillation phase is investigated for both in-phase and anti-phase synchronization modes when recognizing direct and inverse images. This context-dependent effect opens promising avenues for the development of analog hardware circuits for energy-efficient neurocomputing applications, potentially leading to breakthroughs in artificial intelligence and cognitive computing.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550027"},"PeriodicalIF":6.4000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward a Biologically Plausible SNN-Based Associative Memory with Context-Dependent Hebbian Connectivity.\",\"authors\":\"S Yu Makovkin, S Yu Gordleeva, I A Kastalskiy\",\"doi\":\"10.1142/S0129065725500273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we propose a spiking neural network model with Hebbian connectivity for implementing energy-efficient associative memory, whose activity is determined by input stimuli. The model consists of three interacting layers of Hodgkin-Huxley-Mainen spiking neurons with excitatory and inhibitory synaptic connections. Information patterns are stored in memory using a symmetric Hebbian matrix and can be retrieved in response to a specific stimulus pattern. Binary images are encoded using in-phase and anti-phase oscillations relative to a global clock signal. Utilizing the phase-locking effect allows for cluster synchronization of neurons (both on the input and output layers). Interneurons in the intermediate layer filter signal propagation pathways depending on the context of the input layer, effectively engaging only a portion of the synaptic connections within the Hebbian matrix for recognition. The stability of the oscillation phase is investigated for both in-phase and anti-phase synchronization modes when recognizing direct and inverse images. This context-dependent effect opens promising avenues for the development of analog hardware circuits for energy-efficient neurocomputing applications, potentially leading to breakthroughs in artificial intelligence and cognitive computing.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2550027\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065725500273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个具有Hebbian连接的峰值神经网络模型来实现节能联想记忆,其活动由输入刺激决定。该模型由具有兴奋性和抑制性突触连接的霍奇金-赫胥黎- mainen尖峰神经元三层相互作用组成。信息模式使用对称的Hebbian矩阵存储在记忆中,并且可以在响应特定的刺激模式时检索。二值图像使用相对于全局时钟信号的同相和反相振荡进行编码。利用锁相效应可以实现神经元的集群同步(包括输入层和输出层)。中间层的中间神经元根据输入层的环境过滤信号传播路径,有效地只参与Hebbian矩阵内的部分突触连接进行识别。研究了正反两种同步方式下的振荡相位稳定性。这种环境依赖效应为节能神经计算应用的模拟硬件电路的开发开辟了有希望的途径,可能导致人工智能和认知计算的突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward a Biologically Plausible SNN-Based Associative Memory with Context-Dependent Hebbian Connectivity.

In this paper, we propose a spiking neural network model with Hebbian connectivity for implementing energy-efficient associative memory, whose activity is determined by input stimuli. The model consists of three interacting layers of Hodgkin-Huxley-Mainen spiking neurons with excitatory and inhibitory synaptic connections. Information patterns are stored in memory using a symmetric Hebbian matrix and can be retrieved in response to a specific stimulus pattern. Binary images are encoded using in-phase and anti-phase oscillations relative to a global clock signal. Utilizing the phase-locking effect allows for cluster synchronization of neurons (both on the input and output layers). Interneurons in the intermediate layer filter signal propagation pathways depending on the context of the input layer, effectively engaging only a portion of the synaptic connections within the Hebbian matrix for recognition. The stability of the oscillation phase is investigated for both in-phase and anti-phase synchronization modes when recognizing direct and inverse images. This context-dependent effect opens promising avenues for the development of analog hardware circuits for energy-efficient neurocomputing applications, potentially leading to breakthroughs in artificial intelligence and cognitive computing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信