A Unified Hypergraph-Mamba Framework for Adaptive Electroencephalogram Modeling in Multi-view Seizure Prediction.

IF 6.4
Dengdi Sun, Yanqing Liu, Changxu Dong, Zongyun Gu
{"title":"A Unified Hypergraph-Mamba Framework for Adaptive Electroencephalogram Modeling in Multi-view Seizure Prediction.","authors":"Dengdi Sun, Yanqing Liu, Changxu Dong, Zongyun Gu","doi":"10.1142/S012906572550056X","DOIUrl":null,"url":null,"abstract":"<p><p>Seizure prediction from Electroencephalogram (EEG) signals is a critical task for proactive intervention in epilepsy management. Existing models often struggle to capture high-order inter-channel dependencies dynamically and adapt to the spectral variations preceding seizure onset, especially in cross-patient scenarios. To address these issues, a novel Unified Hypergraph-Mamba (UHM) framework, which for the first time integrates hypergraph-based spatial modeling with Mamba-based adaptive spectral modeling. Specifically, a hypergraph attention mechanism is designed to capture high-order spatial interactions among EEG channels, enabling dynamic representation of inter-channel dependencies. Concurrently, an adaptive spectral modeling module based on the Mamba architecture selectively emphasizes frequency components most indicative of preictal states. Together, these components form a unified architecture capable of jointly modeling spatiotemporal EEG dynamics. Extensive experiments conducted on both patient-specific and cross-patient settings demonstrate that our model consistently outperforms state-of-the-art baselines, achieving superior sensitivity and AUC.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550056"},"PeriodicalIF":6.4000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S012906572550056X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Seizure prediction from Electroencephalogram (EEG) signals is a critical task for proactive intervention in epilepsy management. Existing models often struggle to capture high-order inter-channel dependencies dynamically and adapt to the spectral variations preceding seizure onset, especially in cross-patient scenarios. To address these issues, a novel Unified Hypergraph-Mamba (UHM) framework, which for the first time integrates hypergraph-based spatial modeling with Mamba-based adaptive spectral modeling. Specifically, a hypergraph attention mechanism is designed to capture high-order spatial interactions among EEG channels, enabling dynamic representation of inter-channel dependencies. Concurrently, an adaptive spectral modeling module based on the Mamba architecture selectively emphasizes frequency components most indicative of preictal states. Together, these components form a unified architecture capable of jointly modeling spatiotemporal EEG dynamics. Extensive experiments conducted on both patient-specific and cross-patient settings demonstrate that our model consistently outperforms state-of-the-art baselines, achieving superior sensitivity and AUC.

多视点癫痫发作预测自适应脑电图建模的统一超图-曼巴框架。
从脑电图(EEG)信号中预测癫痫发作是主动干预癫痫管理的一项关键任务。现有的模型往往难以动态捕获高阶通道间依赖关系,并适应癫痫发作前的频谱变化,特别是在跨患者的情况下。为了解决这些问题,一种新的统一超图-曼巴(UHM)框架首次集成了基于超图的空间建模和基于曼巴的自适应光谱建模。具体来说,设计了一个超图注意机制来捕捉脑电通道之间的高阶空间相互作用,从而实现通道间依赖关系的动态表示。同时,基于Mamba结构的自适应频谱建模模块选择性地强调了最能指示预测状态的频率成分。这些组件共同构成了一个统一的体系结构,能够联合建模EEG的时空动态。在患者特异性和跨患者设置中进行的大量实验表明,我们的模型始终优于最先进的基线,实现了卓越的灵敏度和AUC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信