A Salient Object Detection Network Enhanced by Nonlinear Spiking Neural Systems and Transformer.

IF 6.4
International journal of neural systems Pub Date : 2025-11-01 Epub Date: 2025-06-20 DOI:10.1142/S0129065725500455
Wang Li, Meichen Xia, Hong Peng, Zhicai Liu, Jun Guo
{"title":"A Salient Object Detection Network Enhanced by Nonlinear Spiking Neural Systems and Transformer.","authors":"Wang Li, Meichen Xia, Hong Peng, Zhicai Liu, Jun Guo","doi":"10.1142/S0129065725500455","DOIUrl":null,"url":null,"abstract":"<p><p>Although a variety of deep learning-based methods have been introduced for Salient Object Detection (SOD) to RGB and Depth (RGB-D) images, existing approaches still encounter challenges, including inadequate cross-modal feature fusion, significant errors in saliency estimation due to noise in depth information, and limited model generalization capabilities. To tackle these challenges, this paper introduces an innovative method for RGB-D SOD, TranSNP-Net, which integrates Nonlinear Spiking Neural P (NSNP) systems with Transformer networks. TranSNP-Net effectively fuses RGB and depth features by introducing an enhanced feature fusion module (SNPFusion) and an attention mechanism. Unlike traditional methods, TranSNP-Net leverages fine-tuned Swin (shifted window transformer) as its backbone network, significantly improving the model's generalization performance. Furthermore, the proposed hierarchical feature decoder (SNP-D) notably enhances accuracy in complex scenes where depth noise is prevalent. According to the experimental findings, the mean scores for the four metrics S-measure, F-measure, E-measure and MEA on the six RGB-D benchmark datasets are 0.9328, 0.9356, 0.9558 and 0.0288. TranSNP-Net achieves superior performance compared to 14 leading methods in six RGB-D benchmark datasets.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550045"},"PeriodicalIF":6.4000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although a variety of deep learning-based methods have been introduced for Salient Object Detection (SOD) to RGB and Depth (RGB-D) images, existing approaches still encounter challenges, including inadequate cross-modal feature fusion, significant errors in saliency estimation due to noise in depth information, and limited model generalization capabilities. To tackle these challenges, this paper introduces an innovative method for RGB-D SOD, TranSNP-Net, which integrates Nonlinear Spiking Neural P (NSNP) systems with Transformer networks. TranSNP-Net effectively fuses RGB and depth features by introducing an enhanced feature fusion module (SNPFusion) and an attention mechanism. Unlike traditional methods, TranSNP-Net leverages fine-tuned Swin (shifted window transformer) as its backbone network, significantly improving the model's generalization performance. Furthermore, the proposed hierarchical feature decoder (SNP-D) notably enhances accuracy in complex scenes where depth noise is prevalent. According to the experimental findings, the mean scores for the four metrics S-measure, F-measure, E-measure and MEA on the six RGB-D benchmark datasets are 0.9328, 0.9356, 0.9558 and 0.0288. TranSNP-Net achieves superior performance compared to 14 leading methods in six RGB-D benchmark datasets.

非线性尖峰神经系统和变压器增强的显著目标检测网络。
尽管各种基于深度学习的方法已经被引入到RGB和深度(RGB- d)图像的显著目标检测(SOD)中,但现有方法仍然面临挑战,包括跨模态特征融合不足,由于深度信息中的噪声导致显著性估计存在显着误差,以及模型泛化能力有限。为了应对这些挑战,本文介绍了一种针对RGB-D SOD的创新方法TranSNP-Net,该方法将非线性峰值神经网络(NSNP)系统与变压器网络集成在一起。TranSNP-Net通过引入增强型特征融合模块(SNPFusion)和注意机制,有效地融合了RGB和深度特征。与传统方法不同,TranSNP-Net利用微调Swin(移位窗口变压器)作为其骨干网络,显著提高了模型的泛化性能。此外,所提出的分层特征解码器(SNP-D)在深度噪声普遍存在的复杂场景中显著提高了精度。实验结果表明,在6个RGB-D基准数据集上,S-measure、F-measure、E-measure和MEA 4个指标的平均得分分别为0.9328、0.9356、0.9558和0.0288。在6个RGB-D基准数据集中,与14种领先的方法相比,TranSNP-Net实现了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信