{"title":"热图像语义分割网络的非线性尖峰神经系统。","authors":"Peng Wang, Minglong He, Hong Peng, Zhicai Liu","doi":"10.1142/S0129065725500388","DOIUrl":null,"url":null,"abstract":"<p><p>Thermal and RGB images exhibit significant differences in information representation, especially in low-light or nighttime environments. Thermal images provide temperature information, complementing the RGB images by restoring details and contextual information. However, the spatial discrepancy between different modalities in RGB-Thermal (RGB-T) semantic segmentation tasks complicates the process of multimodal feature fusion, leading to a loss of spatial contextual information and limited model performance. This paper proposes a channel-space fusion nonlinear spiking neural P system model network (CSPM-SNPNet) to address these challenges. This paper designs a novel color-thermal image fusion module to effectively integrate features from both modalities. During decoding, a nonlinear spiking neural P system is introduced to enhance multi-channel information extraction through the convolution of spiking neural P systems (ConvSNP) operations, fully restoring features learned in the encoder. Experimental results on public datasets MFNet and PST900 demonstrate that CSPM-SNPNet significantly improves segmentation performance. Compared with the existing methods, CSPM-SNPNet achieves a 0.5% improvement in mIOU on MFNet and 1.8% on PST900, showcasing its effectiveness in complex scenes.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550038"},"PeriodicalIF":6.4000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Spiking Neural Systems for thermal Image Semantic Segmentation Networks.\",\"authors\":\"Peng Wang, Minglong He, Hong Peng, Zhicai Liu\",\"doi\":\"10.1142/S0129065725500388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thermal and RGB images exhibit significant differences in information representation, especially in low-light or nighttime environments. Thermal images provide temperature information, complementing the RGB images by restoring details and contextual information. However, the spatial discrepancy between different modalities in RGB-Thermal (RGB-T) semantic segmentation tasks complicates the process of multimodal feature fusion, leading to a loss of spatial contextual information and limited model performance. This paper proposes a channel-space fusion nonlinear spiking neural P system model network (CSPM-SNPNet) to address these challenges. This paper designs a novel color-thermal image fusion module to effectively integrate features from both modalities. During decoding, a nonlinear spiking neural P system is introduced to enhance multi-channel information extraction through the convolution of spiking neural P systems (ConvSNP) operations, fully restoring features learned in the encoder. Experimental results on public datasets MFNet and PST900 demonstrate that CSPM-SNPNet significantly improves segmentation performance. Compared with the existing methods, CSPM-SNPNet achieves a 0.5% improvement in mIOU on MFNet and 1.8% on PST900, showcasing its effectiveness in complex scenes.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2550038\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065725500388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear Spiking Neural Systems for thermal Image Semantic Segmentation Networks.
Thermal and RGB images exhibit significant differences in information representation, especially in low-light or nighttime environments. Thermal images provide temperature information, complementing the RGB images by restoring details and contextual information. However, the spatial discrepancy between different modalities in RGB-Thermal (RGB-T) semantic segmentation tasks complicates the process of multimodal feature fusion, leading to a loss of spatial contextual information and limited model performance. This paper proposes a channel-space fusion nonlinear spiking neural P system model network (CSPM-SNPNet) to address these challenges. This paper designs a novel color-thermal image fusion module to effectively integrate features from both modalities. During decoding, a nonlinear spiking neural P system is introduced to enhance multi-channel information extraction through the convolution of spiking neural P systems (ConvSNP) operations, fully restoring features learned in the encoder. Experimental results on public datasets MFNet and PST900 demonstrate that CSPM-SNPNet significantly improves segmentation performance. Compared with the existing methods, CSPM-SNPNet achieves a 0.5% improvement in mIOU on MFNet and 1.8% on PST900, showcasing its effectiveness in complex scenes.