Nonlinear Spiking Neural Systems for thermal Image Semantic Segmentation Networks.

IF 6.4
Peng Wang, Minglong He, Hong Peng, Zhicai Liu
{"title":"Nonlinear Spiking Neural Systems for thermal Image Semantic Segmentation Networks.","authors":"Peng Wang, Minglong He, Hong Peng, Zhicai Liu","doi":"10.1142/S0129065725500388","DOIUrl":null,"url":null,"abstract":"<p><p>Thermal and RGB images exhibit significant differences in information representation, especially in low-light or nighttime environments. Thermal images provide temperature information, complementing the RGB images by restoring details and contextual information. However, the spatial discrepancy between different modalities in RGB-Thermal (RGB-T) semantic segmentation tasks complicates the process of multimodal feature fusion, leading to a loss of spatial contextual information and limited model performance. This paper proposes a channel-space fusion nonlinear spiking neural P system model network (CSPM-SNPNet) to address these challenges. This paper designs a novel color-thermal image fusion module to effectively integrate features from both modalities. During decoding, a nonlinear spiking neural P system is introduced to enhance multi-channel information extraction through the convolution of spiking neural P systems (ConvSNP) operations, fully restoring features learned in the encoder. Experimental results on public datasets MFNet and PST900 demonstrate that CSPM-SNPNet significantly improves segmentation performance. Compared with the existing methods, CSPM-SNPNet achieves a 0.5% improvement in mIOU on MFNet and 1.8% on PST900, showcasing its effectiveness in complex scenes.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550038"},"PeriodicalIF":6.4000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal and RGB images exhibit significant differences in information representation, especially in low-light or nighttime environments. Thermal images provide temperature information, complementing the RGB images by restoring details and contextual information. However, the spatial discrepancy between different modalities in RGB-Thermal (RGB-T) semantic segmentation tasks complicates the process of multimodal feature fusion, leading to a loss of spatial contextual information and limited model performance. This paper proposes a channel-space fusion nonlinear spiking neural P system model network (CSPM-SNPNet) to address these challenges. This paper designs a novel color-thermal image fusion module to effectively integrate features from both modalities. During decoding, a nonlinear spiking neural P system is introduced to enhance multi-channel information extraction through the convolution of spiking neural P systems (ConvSNP) operations, fully restoring features learned in the encoder. Experimental results on public datasets MFNet and PST900 demonstrate that CSPM-SNPNet significantly improves segmentation performance. Compared with the existing methods, CSPM-SNPNet achieves a 0.5% improvement in mIOU on MFNet and 1.8% on PST900, showcasing its effectiveness in complex scenes.

热图像语义分割网络的非线性尖峰神经系统。
热图像和RGB图像在信息表示方面表现出显著差异,特别是在低光或夜间环境中。热图像提供温度信息,通过恢复细节和上下文信息来补充RGB图像。然而,rgb -热(RGB-T)语义分割任务中不同模态之间的空间差异使多模态特征融合过程变得复杂,导致空间上下文信息的丢失,限制了模型的性能。本文提出了一种信道空间融合非线性脉冲神经系统模型网络(CSPM-SNPNet)来解决这些问题。本文设计了一种新型的彩色热图像融合模块,有效地融合了两种模式的特征。在解码过程中,引入非线性尖峰神经P系统,通过尖峰神经P系统(ConvSNP)操作的卷积来增强多通道信息提取,完全恢复编码器中学习到的特征。在公共数据集MFNet和PST900上的实验结果表明,CSPM-SNPNet显著提高了分割性能。与现有方法相比,CSPM-SNPNet在MFNet上的mIOU提高了0.5%,在PST900上提高了1.8%,显示了其在复杂场景下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信