{"title":"高精度脑电图-眼动情感识别的视觉启发多模态迭代注意网络。","authors":"Wei Meng, Fazheng Hou, Kun Chen, Li Ma, Quan Liu","doi":"10.1142/S0129065725500728","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in artificial intelligence have propelled affective computing toward unprecedented accuracy and real-world impact. By leveraging the unique strengths of brain signals and ocular dynamics, we introduce a novel multimodal framework that integrates EEG and eye-movement (EM) features synergistically to achieve more reliable emotion recognition. First, our EEG Feature Encoder (EFE) uses a convolutional architecture inspired by the human visual cortex's eccentricity-receptive-field mapping, enabling the extraction of highly discriminative neural patterns. Second, our EM Feature Encoder (EMFE) employs a Kolmogorov-Arnold Network (KAN) to overcome the sparse sampling and dimensional mismatch inherent in EM data; through a tailored multilayer design and interpolation alignment, it generates rich, modality-compatible representations. Finally, the core Multimodal Iterative Attentional Feature Fusion (MIAFF) module unites these streams: alternating global and local attention via a Hierarchical Channel Attention Module (HCAM) to iteratively refine and integrate features. Comprehensive evaluations on SEED (3-class) and SEED-IV (4-class) benchmarks show that our method reaches leading-edge accuracy. However, our experiments are limited by small homogeneous datasets, untested cross-cultural robustness, and potential degradation in noisy or edge-deployment settings. Nevertheless, this work not only underscores the power of biomimetic encoding and iterative attention but also paves the way for next-generation brain-computer interface applications in affective health, adaptive gaming, and beyond.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550072"},"PeriodicalIF":6.4000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visually-Inspired Multimodal Iterative Attentional Network for High-Precision EEG-Eye-Movement Emotion Recognition.\",\"authors\":\"Wei Meng, Fazheng Hou, Kun Chen, Li Ma, Quan Liu\",\"doi\":\"10.1142/S0129065725500728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advancements in artificial intelligence have propelled affective computing toward unprecedented accuracy and real-world impact. By leveraging the unique strengths of brain signals and ocular dynamics, we introduce a novel multimodal framework that integrates EEG and eye-movement (EM) features synergistically to achieve more reliable emotion recognition. First, our EEG Feature Encoder (EFE) uses a convolutional architecture inspired by the human visual cortex's eccentricity-receptive-field mapping, enabling the extraction of highly discriminative neural patterns. Second, our EM Feature Encoder (EMFE) employs a Kolmogorov-Arnold Network (KAN) to overcome the sparse sampling and dimensional mismatch inherent in EM data; through a tailored multilayer design and interpolation alignment, it generates rich, modality-compatible representations. Finally, the core Multimodal Iterative Attentional Feature Fusion (MIAFF) module unites these streams: alternating global and local attention via a Hierarchical Channel Attention Module (HCAM) to iteratively refine and integrate features. Comprehensive evaluations on SEED (3-class) and SEED-IV (4-class) benchmarks show that our method reaches leading-edge accuracy. However, our experiments are limited by small homogeneous datasets, untested cross-cultural robustness, and potential degradation in noisy or edge-deployment settings. Nevertheless, this work not only underscores the power of biomimetic encoding and iterative attention but also paves the way for next-generation brain-computer interface applications in affective health, adaptive gaming, and beyond.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2550072\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065725500728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visually-Inspired Multimodal Iterative Attentional Network for High-Precision EEG-Eye-Movement Emotion Recognition.
Advancements in artificial intelligence have propelled affective computing toward unprecedented accuracy and real-world impact. By leveraging the unique strengths of brain signals and ocular dynamics, we introduce a novel multimodal framework that integrates EEG and eye-movement (EM) features synergistically to achieve more reliable emotion recognition. First, our EEG Feature Encoder (EFE) uses a convolutional architecture inspired by the human visual cortex's eccentricity-receptive-field mapping, enabling the extraction of highly discriminative neural patterns. Second, our EM Feature Encoder (EMFE) employs a Kolmogorov-Arnold Network (KAN) to overcome the sparse sampling and dimensional mismatch inherent in EM data; through a tailored multilayer design and interpolation alignment, it generates rich, modality-compatible representations. Finally, the core Multimodal Iterative Attentional Feature Fusion (MIAFF) module unites these streams: alternating global and local attention via a Hierarchical Channel Attention Module (HCAM) to iteratively refine and integrate features. Comprehensive evaluations on SEED (3-class) and SEED-IV (4-class) benchmarks show that our method reaches leading-edge accuracy. However, our experiments are limited by small homogeneous datasets, untested cross-cultural robustness, and potential degradation in noisy or edge-deployment settings. Nevertheless, this work not only underscores the power of biomimetic encoding and iterative attention but also paves the way for next-generation brain-computer interface applications in affective health, adaptive gaming, and beyond.