An Enhanced Random Convolutional Kernel Transform for Diverse and Robust Feature Extraction from High-Density Surface Electromyograms for Cross-day Gesture Recognition.

IF 6.4
Yonglin Wu, Xinyu Jiang, Jionghui Liu, Yao Guo, Chenyun Dai
{"title":"An Enhanced Random Convolutional Kernel Transform for Diverse and Robust Feature Extraction from High-Density Surface Electromyograms for Cross-day Gesture Recognition.","authors":"Yonglin Wu, Xinyu Jiang, Jionghui Liu, Yao Guo, Chenyun Dai","doi":"10.1142/S0129065725500625","DOIUrl":null,"url":null,"abstract":"<p><p>High-density surface electromyogram (HD-sEMG) has become a powerful signal source for hand gesture recognition. However, existing approaches suffer from limited feature diversity in hand-crafted methods and high data dependency in deep learning models, necessitating individual model calibration for each user due to neuromuscular differences. We propose EMG-ROCKET, an enhanced version of the RandOm Convolutional KErnel Transform (ROCKET), designed to extract diverse and robust HD-sEMG features without prior knowledge or extensive training. EMG-ROCKET integrates random channel fusion and enhanced aggregation functions to enhance robustness against cross-day signal variability in HD-sEMG applications. In cross-day evaluations of hand gesture recognition, a Ridge classifier using EMG-ROCKET features achieved 84.3% and 77.8% accuracy on two HD-sEMG datasets, outperforming all baseline methods. Furthermore, feature contribution analysis demonstrates the capability of EMG-ROCKET to capture spatial muscle activation patterns, offering insights into motion mechanisms. These results establish EMG-ROCKET as a promising, training-free solution for robust HD-sEMG feature extraction, facilitating practical human-machine interaction applications.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550062"},"PeriodicalIF":6.4000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-density surface electromyogram (HD-sEMG) has become a powerful signal source for hand gesture recognition. However, existing approaches suffer from limited feature diversity in hand-crafted methods and high data dependency in deep learning models, necessitating individual model calibration for each user due to neuromuscular differences. We propose EMG-ROCKET, an enhanced version of the RandOm Convolutional KErnel Transform (ROCKET), designed to extract diverse and robust HD-sEMG features without prior knowledge or extensive training. EMG-ROCKET integrates random channel fusion and enhanced aggregation functions to enhance robustness against cross-day signal variability in HD-sEMG applications. In cross-day evaluations of hand gesture recognition, a Ridge classifier using EMG-ROCKET features achieved 84.3% and 77.8% accuracy on two HD-sEMG datasets, outperforming all baseline methods. Furthermore, feature contribution analysis demonstrates the capability of EMG-ROCKET to capture spatial muscle activation patterns, offering insights into motion mechanisms. These results establish EMG-ROCKET as a promising, training-free solution for robust HD-sEMG feature extraction, facilitating practical human-machine interaction applications.

基于增强随机卷积核变换的高密度表面肌电特征提取方法。
高密度表面肌电图(HD-sEMG)已成为手势识别的有力信号源。然而,现有的方法在手工制作方法中存在有限的特征多样性和深度学习模型中的高度数据依赖性,由于神经肌肉的差异,需要为每个用户单独校准模型。我们提出了EMG-ROCKET,一种增强版本的随机卷积核变换(ROCKET),旨在提取多样化和鲁棒的HD-sEMG特征,而无需事先了解或广泛的训练。EMG-ROCKET集成了随机信道融合和增强的聚合功能,增强了HD-sEMG应用中对跨天信号变异性的鲁棒性。在手势识别的跨天评估中,使用肌电图rocket特征的Ridge分类器在两个HD-sEMG数据集上实现了84.3%和77.8%的准确率,优于所有基线方法。此外,特征贡献分析证明了肌电-火箭捕捉空间肌肉激活模式的能力,为运动机制提供了见解。这些结果表明,EMG-ROCKET是一种有前途的、无需训练的解决方案,可用于强大的HD-sEMG特征提取,促进实际的人机交互应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信