Visually-Inspired Multimodal Iterative Attentional Network for High-Precision EEG-Eye-Movement Emotion Recognition.

IF 6.4
Wei Meng, Fazheng Hou, Kun Chen, Li Ma, Quan Liu
{"title":"Visually-Inspired Multimodal Iterative Attentional Network for High-Precision EEG-Eye-Movement Emotion Recognition.","authors":"Wei Meng, Fazheng Hou, Kun Chen, Li Ma, Quan Liu","doi":"10.1142/S0129065725500728","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in artificial intelligence have propelled affective computing toward unprecedented accuracy and real-world impact. By leveraging the unique strengths of brain signals and ocular dynamics, we introduce a novel multimodal framework that integrates EEG and eye-movement (EM) features synergistically to achieve more reliable emotion recognition. First, our EEG Feature Encoder (EFE) uses a convolutional architecture inspired by the human visual cortex's eccentricity-receptive-field mapping, enabling the extraction of highly discriminative neural patterns. Second, our EM Feature Encoder (EMFE) employs a Kolmogorov-Arnold Network (KAN) to overcome the sparse sampling and dimensional mismatch inherent in EM data; through a tailored multilayer design and interpolation alignment, it generates rich, modality-compatible representations. Finally, the core Multimodal Iterative Attentional Feature Fusion (MIAFF) module unites these streams: alternating global and local attention via a Hierarchical Channel Attention Module (HCAM) to iteratively refine and integrate features. Comprehensive evaluations on SEED (3-class) and SEED-IV (4-class) benchmarks show that our method reaches leading-edge accuracy. However, our experiments are limited by small homogeneous datasets, untested cross-cultural robustness, and potential degradation in noisy or edge-deployment settings. Nevertheless, this work not only underscores the power of biomimetic encoding and iterative attention but also paves the way for next-generation brain-computer interface applications in affective health, adaptive gaming, and beyond.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550072"},"PeriodicalIF":6.4000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in artificial intelligence have propelled affective computing toward unprecedented accuracy and real-world impact. By leveraging the unique strengths of brain signals and ocular dynamics, we introduce a novel multimodal framework that integrates EEG and eye-movement (EM) features synergistically to achieve more reliable emotion recognition. First, our EEG Feature Encoder (EFE) uses a convolutional architecture inspired by the human visual cortex's eccentricity-receptive-field mapping, enabling the extraction of highly discriminative neural patterns. Second, our EM Feature Encoder (EMFE) employs a Kolmogorov-Arnold Network (KAN) to overcome the sparse sampling and dimensional mismatch inherent in EM data; through a tailored multilayer design and interpolation alignment, it generates rich, modality-compatible representations. Finally, the core Multimodal Iterative Attentional Feature Fusion (MIAFF) module unites these streams: alternating global and local attention via a Hierarchical Channel Attention Module (HCAM) to iteratively refine and integrate features. Comprehensive evaluations on SEED (3-class) and SEED-IV (4-class) benchmarks show that our method reaches leading-edge accuracy. However, our experiments are limited by small homogeneous datasets, untested cross-cultural robustness, and potential degradation in noisy or edge-deployment settings. Nevertheless, this work not only underscores the power of biomimetic encoding and iterative attention but also paves the way for next-generation brain-computer interface applications in affective health, adaptive gaming, and beyond.

高精度脑电图-眼动情感识别的视觉启发多模态迭代注意网络。
人工智能的进步将情感计算推向了前所未有的准确性和现实世界的影响。通过利用脑信号和眼动力学的独特优势,我们引入了一种新的多模态框架,该框架将EEG和眼动(EM)特征协同集成,以实现更可靠的情绪识别。首先,我们的EEG特征编码器(EFE)采用了一种卷积架构,灵感来自于人类视觉皮层的偏心-接受场映射,从而能够提取高度判别的神经模式。其次,我们的EM特征编码器(EMFE)采用Kolmogorov-Arnold网络(KAN)来克服EM数据固有的稀疏采样和维度不匹配;通过定制的多层设计和插值对齐,它生成丰富的、模态兼容的表示。最后,核心的多模态迭代注意特征融合(MIAFF)模块通过分层通道注意模块(HCAM)将这些流联合起来:交替的全局和局部注意,迭代地改进和集成特征。对SEED(3级)和SEED- iv(4级)基准的综合评估表明,我们的方法达到了领先的精度。然而,我们的实验受到小型同构数据集、未经测试的跨文化鲁棒性以及在嘈杂或边缘部署设置下的潜在退化的限制。尽管如此,这项工作不仅强调了仿生编码和迭代注意力的力量,而且为下一代脑机接口在情感健康、适应性游戏等领域的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信