{"title":"Referring Image Segmentation with Multi-Modal Feature Interaction and Alignment Based on Convolutional Nonlinear Spiking Neural Membrane Systems.","authors":"Siyan Sun, Peng Wang, Hong Peng, Zhicai Liu","doi":"10.1142/S0129065724500643","DOIUrl":"10.1142/S0129065724500643","url":null,"abstract":"<p><p>Referring image segmentation aims to accurately align image pixels and text features for object segmentation based on natural language descriptions. This paper proposes NSNPRIS (convolutional nonlinear spiking neural P systems for referring image segmentation), a novel model based on convolutional nonlinear spiking neural P systems. NSNPRIS features NSNPFusion and Language Gate modules to enhance feature interaction during encoding, along with an NSNPDecoder for feature alignment and decoding. Experimental results on RefCOCO, RefCOCO[Formula: see text], and G-Ref datasets demonstrate that NSNPRIS performs better than mainstream methods. Our contributions include advances in the alignment of pixel and textual features and the improvement of segmentation accuracy.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450064"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenchen Cheng, Yunbo Shi, Yan Liu, Bo You, Yuanfeng Zhou, Ardalan Aarabi, Yakang Dai
{"title":"Sparse Spike Feature Learning to Recognize Traceable Interictal Epileptiform Spikes.","authors":"Chenchen Cheng, Yunbo Shi, Yan Liu, Bo You, Yuanfeng Zhou, Ardalan Aarabi, Yakang Dai","doi":"10.1142/S0129065724500710","DOIUrl":"https://doi.org/10.1142/S0129065724500710","url":null,"abstract":"<p><p>Interictal epileptiform spikes (spikes) and epileptogenic focus are strongly correlated. However, partial spikes are insensitive to epileptogenic focus, which restricts epilepsy neurosurgery. Therefore, identifying spike subtypes that are strongly associated with epileptogenic focus (traceable spikes) could facilitate their use as reliable signal sources for accurately tracing epileptogenic focus. However, the sparse firing phenomenon in the transmission of intracranial neuronal discharges leads to differences within spikes that cannot be observed visually. Therefore, neuro-electro-physiologists are unable to identify traceable spikes that could accurately locate epileptogenic focus. Herein, we propose a novel sparse spike feature learning method to recognize traceable spikes and extract discrimination information related to epileptogenic focus. First, a multilevel eigensystem feature representation was determined based on a multilevel feature representation module to express the intrinsic properties of a spike. Second, the sparse feature learning module expressed the sparse spike multi-domain context feature representation to extract sparse spike feature representations. Among them, a sparse spike encoding strategy was implemented to effectively simulate the sparse firing phenomenon for the accurate encoding of the activity of intracranial neurosources. The sensitivity of the proposed method was 97.1%, demonstrating its effectiveness and significant efficiency relative to other state-of-the-art methods.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450071"},"PeriodicalIF":0.0,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anomaly Detection Using Complete Cycle Consistent Generative Adversarial Network.","authors":"Zahra Dehghanian, Saeed Saravani, Maryam Amirmazlaghani, Mohamad Rahmati","doi":"10.1142/S0129065725500042","DOIUrl":"https://doi.org/10.1142/S0129065725500042","url":null,"abstract":"<p><p>This research presents a robust adversarial method for anomaly detection in real-world scenarios, leveraging the power of generative adversarial neural networks (GANs) through cycle consistency in reconstruction error. Traditional approaches often falter due to high variance in class-wise accuracy, rendering them ineffective across different anomaly types. Our proposed model addresses these challenges by introducing an innovative flow of information in the training procedure and integrating it as a new discriminator into the framework, thereby optimizing the training dynamics. Furthermore, it employs a supplementary distribution in the input space to steer reconstructions toward the normal data distribution. This adjustment distinctly isolates anomalous instances and enhances detection precision. Also, two unique anomaly scoring mechanisms were developed to augment detection capabilities. Comprehensive evaluations on six varied datasets have confirmed that our model outperforms one-class anomaly detection benchmarks. The implementation is openly accessible to the academic community, available on Github.<sup>a</sup>.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550004"},"PeriodicalIF":0.0,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Romeo Lanzino, Danilo Avola, Federico Fontana, Luigi Cinque, Francesco Scarcello, Gian Luca Foresti
{"title":"SATEER: Subject-Aware Transformer for EEG-Based Emotion Recognition.","authors":"Romeo Lanzino, Danilo Avola, Federico Fontana, Luigi Cinque, Francesco Scarcello, Gian Luca Foresti","doi":"10.1142/S0129065725500029","DOIUrl":"10.1142/S0129065725500029","url":null,"abstract":"<p><p>This study presents a Subject-Aware Transformer-based neural network designed for the Electroencephalogram (EEG) Emotion Recognition task (SATEER), which entails the analysis of EEG signals to classify and interpret human emotional states. SATEER processes the EEG waveforms by transforming them into Mel spectrograms, which can be seen as particular cases of images with the number of channels equal to the number of electrodes used during the recording process; this type of data can thus be processed using a Computer Vision pipeline. Distinct from preceding approaches, this model addresses the variability in individual responses to identical stimuli by incorporating a User Embedder module. This module enables the association of individual profiles with their EEGs, thereby enhancing classification accuracy. The efficacy of the model was rigorously evaluated using four publicly available datasets, demonstrating superior performance over existing methods in all conducted benchmarks. For instance, on the AMIGOS dataset (A dataset for Multimodal research of affect, personality traits, and mood on Individuals and GrOupS), SATEER's accuracy exceeds 99.8% accuracy across all labels and showcases an improvement of 0.47% over the state of the art. Furthermore, an exhaustive ablation study underscores the pivotal role of the User Embedder module and each other component of the presented model in achieving these advancements.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550002"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Modified Transformer Network for Seizure Detection Using EEG Signals.","authors":"Wenrong Hu, Juan Wang, Feng Li, Daohui Ge, Yuxia Wang, Qingwei Jia, Shasha Yuan","doi":"10.1142/S0129065725500030","DOIUrl":"10.1142/S0129065725500030","url":null,"abstract":"<p><p>Seizures have a serious impact on the physical function and daily life of epileptic patients. The automated detection of seizures can assist clinicians in taking preventive measures for patients during the diagnosis process. The combination of deep learning (DL) model with convolutional neural network (CNN) and transformer network can effectively extract both local and global features, resulting in improved seizure detection performance. In this study, an enhanced transformer network named Inresformer is proposed for seizure detection, which is combined with Inception and Residual network extracting different scale features of electroencephalography (EEG) signals to enrich the feature representation. In addition, the improved transformer network replaces the existing Feedforward layers with two half-step Feedforward layers to enhance the nonlinear representation of the model. The proposed architecture utilizes discrete wavelet transform (DWT) to decompose the original EEG signals, and the three sub-bands are selected for signal reconstruction. Then, the Co-MixUp method is adopted to solve the problem of data imbalance, and the processed signals are sent to the Inresformer network for seizure information capture and recognition. Finally, discriminant fusion is performed on the results of three-scale EEG sub-signals to achieve final seizure recognition. The proposed network achieves the best accuracy of 100% on Bonn dataset and the average accuracy of 98.03%, sensitivity of 95.65%, and specificity of 98.57% on the long-term CHB-MIT dataset. Compared to the existing DL networks, the proposed method holds significant potential for clinical research and diagnosis applications with competitive performance.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550003"},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Delayed Spiking Neural Membrane System for Adaptive Nearest Neighbor-Based Density Peak Clustering.","authors":"Qianqian Ren, Lianlian Zhang, Shaoyi Liu, Jin-Xing Liu, Junliang Shang, Xiyu Liu","doi":"10.1142/S0129065724500503","DOIUrl":"10.1142/S0129065724500503","url":null,"abstract":"<p><p>Although the density peak clustering (DPC) algorithm can effectively distribute samples and quickly identify noise points, it lacks adaptability and cannot consider the local data structure. In addition, clustering algorithms generally suffer from high time complexity. Prior research suggests that clustering algorithms grounded in P systems can mitigate time complexity concerns. Within the realm of membrane systems (P systems), spiking neural P systems (SN P systems), inspired by biological nervous systems, are third-generation neural networks that possess intricate structures and offer substantial parallelism advantages. Thus, this study first improved the DPC by introducing the maximum nearest neighbor distance and K-nearest neighbors (KNN). Moreover, a method based on delayed spiking neural P systems (DSN P systems) was proposed to improve the performance of the algorithm. Subsequently, the DSNP-ANDPC algorithm was proposed. The effectiveness of DSNP-ANDPC was evaluated through comprehensive evaluations across four synthetic datasets and 10 real-world datasets. The proposed method outperformed the other comparison methods in most cases.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450050"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatial-Temporal Dynamic Hypergraph Information Bottleneck for Brain Network Classification.","authors":"Changxu Dong, Dengdi Sun","doi":"10.1142/S0129065724500539","DOIUrl":"10.1142/S0129065724500539","url":null,"abstract":"<p><p>Recently, Graph Neural Networks (GNNs) have gained widespread application in automatic brain network classification tasks, owing to their ability to directly capture crucial information in non-Euclidean structures. However, two primary challenges persist in this domain. First, within the realm of clinical neuro-medicine, signals from cerebral regions are inevitably contaminated with noise stemming from physiological or external factors. The construction of brain networks heavily relies on set thresholds and feature information within brain regions, making it susceptible to the incorporation of such noises into the brain topology. Additionally, the static nature of the artificially constructed brain network's adjacent structure restricts real-time changes in brain topology. Second, mainstream GNN-based approaches tend to focus solely on capturing information interactions of nearest neighbor nodes, overlooking high-order topology features. In response to these challenges, we propose an adaptive unsupervised Spatial-Temporal Dynamic Hypergraph Information Bottleneck (ST-DHIB) framework for dynamically optimizing brain networks. Specifically, adopting an information theory perspective, Graph Information Bottleneck (GIB) is employed for purifying graph structure, and dynamically updating the processed input brain signals. From a graph theory standpoint, we utilize the designed Hypergraph Neural Network (HGNN) and Bi-LSTM to capture higher-order spatial-temporal context associations among brain channels. Comprehensive patient-specific and cross-patient experiments have been conducted on two available datasets. The results demonstrate the advancement and generalization of the proposed framework.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450053"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automated Quality Assessment of Medical Images in Echocardiography Using Neural Networks with Adaptive Ranking and Structure-Aware Learning.","authors":"Gadeng Luosang, Zhihua Wang, Jian Liu, Fanxin Zeng, Zhang Yi, Jianyong Wang","doi":"10.1142/S0129065724500540","DOIUrl":"10.1142/S0129065724500540","url":null,"abstract":"<p><p>The quality of medical images is crucial for accurately diagnosing and treating various diseases. However, current automated methods for assessing image quality are based on neural networks, which often focus solely on pixel distortion and overlook the significance of complex structures within the images. This study introduces a novel neural network model designed explicitly for automated image quality assessment that addresses pixel and semantic distortion. The model introduces an adaptive ranking mechanism enhanced with contrast sensitivity weighting to refine the detection of minor variances in similar images for pixel distortion assessment. More significantly, the model integrates a structure-aware learning module employing graph neural networks. This module is adept at deciphering the intricate relationships between an image's semantic structure and quality. When evaluated on two ultrasound imaging datasets, the proposed method outshines existing leading models in performance. Additionally, it boasts seamless integration into clinical workflows, enabling real-time image quality assessment, crucial for precise disease diagnosis and treatment.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450054"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erik Roecher, Lucas Mösch, Jana Zweerings, Frank O Thiele, Svenja Caspers, Arnim Johannes Gaebler, Patrick Eisner, Pegah Sarkheil, Klaus Mathiak
{"title":"Motion Artifact Detection for T1-Weighted Brain MR Images Using Convolutional Neural Networks.","authors":"Erik Roecher, Lucas Mösch, Jana Zweerings, Frank O Thiele, Svenja Caspers, Arnim Johannes Gaebler, Patrick Eisner, Pegah Sarkheil, Klaus Mathiak","doi":"10.1142/S0129065724500527","DOIUrl":"10.1142/S0129065724500527","url":null,"abstract":"<p><p>Quality assessment (QA) of magnetic resonance imaging (MRI) encompasses several factors such as noise, contrast, homogeneity, and imaging artifacts. Quality evaluation is often not standardized and relies on the expertise, and vigilance of the personnel, posing limitations especially with large datasets. Machine learning based on convolutional neural networks (CNNs) is a promising approach to address these challenges by performing automated inspection of MR images. In this study, a CNN for the detection of random head motion artifacts (RHM) in T1-weighted MRI as one aspect of image quality is proposed. A two-step approach aimed to first identify images exhibiting pronounced motion artifacts, and second to evaluate the feasibility of a more detailed three-class classification. The utilized dataset consisted of 420 T1-weighted whole-brain image volumes with isotropic resolution. Human experts assigned each volume to one of three classes of artifact prominence. Results demonstrate an accuracy of 95% for the identification of images with pronounced artifact load. The addition of an intermediate class retained an accuracy of 76%. The findings highlight the potential of CNN-based approaches to increase the efficiency of <i>post</i>-<i>hoc</i> QAs in large datasets by flagging images with potentially relevant artifact loads for closer inspection.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450052"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Seizure Detection of EEG Signals Based on Multi-Channel Long- and Short-Term Memory-Like Spiking Neural Model.","authors":"Min Wu, Hong Peng, Zhicai Liu, Jun Wang","doi":"10.1142/S0129065724500515","DOIUrl":"10.1142/S0129065724500515","url":null,"abstract":"<p><p>Seizure is a common neurological disorder that usually manifests itself in recurring seizure, and these seizures can have a serious impact on a person's life and health. Therefore, early detection and diagnosis of seizure is crucial. In order to improve the efficiency of early detection and diagnosis of seizure, this paper proposes a new seizure detection method, which is based on discrete wavelet transform (DWT) and multi-channel long- and short-term memory-like spiking neural P (LSTM-SNP) model. First, the signal is decomposed into 5 levels by using DWT transform to obtain the features of the components at different frequencies, and a series of time-frequency features in wavelet coefficients are extracted. Then, these different features are used to train a multi-channel LSTM-SNP model and perform seizure detection. The proposed method achieves a high seizure detection accuracy on the CHB-MIT dataset: 98.25% accuracy, 98.22% specificity and 97.59% sensitivity. This indicates that the proposed epilepsy detection method can show competitive detection performance.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450051"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}