Driver Emotion Recognition Using Multimodal Signals by Combining Conformer and Autoformer.

IF 6.4
Weiguang Wang, Jian Lian, Chuanjie Xu
{"title":"Driver Emotion Recognition Using Multimodal Signals by Combining Conformer and Autoformer.","authors":"Weiguang Wang, Jian Lian, Chuanjie Xu","doi":"10.1142/S0129065725500698","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to develop a multimodal driver emotion recognition system that accurately identifies a driver's emotional state during the driving process by integrating facial expressions, ElectroCardioGram (ECG) and ElectroEncephaloGram (EEG) signals. Specifically, this study proposes a model that employs a Conformer for analyzing facial images to extract visual cues related to the driver's emotions. Additionally, two Autoformers are utilized to process ECG and EEG signals. The embeddings from these three modalities are then fused using a cross-attention mechanism. The integrated features from the cross-attention mechanism are passed through a fully connected layer and classified to determine the driver's emotional state. The experimental results demonstrate that the fusion of visual, physiological and neurological modalities significantly improves the reliability and accuracy of emotion detection. The proposed approach not only offers insights into the emotional processes critical for driver assistance systems and vehicle safety but also lays the foundation for further advancements in emotion recognition area.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550069"},"PeriodicalIF":6.4000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to develop a multimodal driver emotion recognition system that accurately identifies a driver's emotional state during the driving process by integrating facial expressions, ElectroCardioGram (ECG) and ElectroEncephaloGram (EEG) signals. Specifically, this study proposes a model that employs a Conformer for analyzing facial images to extract visual cues related to the driver's emotions. Additionally, two Autoformers are utilized to process ECG and EEG signals. The embeddings from these three modalities are then fused using a cross-attention mechanism. The integrated features from the cross-attention mechanism are passed through a fully connected layer and classified to determine the driver's emotional state. The experimental results demonstrate that the fusion of visual, physiological and neurological modalities significantly improves the reliability and accuracy of emotion detection. The proposed approach not only offers insights into the emotional processes critical for driver assistance systems and vehicle safety but also lays the foundation for further advancements in emotion recognition area.

基于自变换器和共形器的多模态信号驾驶员情绪识别。
本研究旨在开发一种多模式驾驶员情绪识别系统,通过整合面部表情、心电图(ECG)和脑电图(EEG)信号,准确识别驾驶员在驾驶过程中的情绪状态。具体来说,本研究提出了一个模型,该模型使用Conformer来分析面部图像,以提取与驾驶员情绪相关的视觉线索。另外,利用两个自耦器处理心电和脑电图信号。然后使用交叉注意机制融合这三种模式的嵌入。交叉注意机制的综合特征通过全连接层传递并分类,以确定驾驶员的情绪状态。实验结果表明,视觉、生理和神经模式的融合显著提高了情感检测的可靠性和准确性。该方法不仅提供了对驾驶员辅助系统和车辆安全至关重要的情感过程的见解,而且为情感识别领域的进一步发展奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信