{"title":"具有综合注意机制的复合眼启发的多尺度神经结构。","authors":"Ferrante Neri, Mengchen Yang, Yu Xue","doi":"10.1142/S0129065725500650","DOIUrl":null,"url":null,"abstract":"<p><p>In the context of neural system structure modeling and complex visual tasks, the effective integration of multi-scale features and contextual information is critical for enhancing model performance. This paper proposes a biologically inspired hybrid neural network architecture - CompEyeNet - which combines the global modeling capacity of transformers with the efficiency of lightweight convolutional structures. The backbone network, multi-attention transformer backbone network (MATBN), integrates multiple attention mechanisms to collaboratively model local details and long-range dependencies. The neck network, compound eye neck network (CENN), introduces high-resolution feature layers and efficient attention fusion modules to significantly enhance multi-scale information representation and reconstruction capability. CompEyeNet is evaluated on three authoritative medical image segmentation datasets: MICCAI-CVC-ClinicDB, ISIC2018, and MICCAI-tooth-segmentation, demonstrating its superior performance. Experimental results show that compared to models such as Deeplab, Unet, and the YOLO series, CompEyeNet achieves better performance with fewer parameters. Specifically, compared to the baseline model YOLOv11, CompEyeNet reduces the number of parameters by an average of 38.31%. On key performance metrics, the average Dice coefficient improves by 0.87%, the Jaccard index by 1.53%, Precision by 0.58%, and Recall by 1.11%. These findings verify the advantages of the proposed architecture in terms of parameter efficiency and accuracy, highlighting the broad application potential of bio-inspired attention-fusion hybrid neural networks in neural system modeling and image analysis.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550065"},"PeriodicalIF":6.4000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Compound-Eye-Inspired Multi-Scale Neural Architecture with Integrated Attention Mechanisms.\",\"authors\":\"Ferrante Neri, Mengchen Yang, Yu Xue\",\"doi\":\"10.1142/S0129065725500650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the context of neural system structure modeling and complex visual tasks, the effective integration of multi-scale features and contextual information is critical for enhancing model performance. This paper proposes a biologically inspired hybrid neural network architecture - CompEyeNet - which combines the global modeling capacity of transformers with the efficiency of lightweight convolutional structures. The backbone network, multi-attention transformer backbone network (MATBN), integrates multiple attention mechanisms to collaboratively model local details and long-range dependencies. The neck network, compound eye neck network (CENN), introduces high-resolution feature layers and efficient attention fusion modules to significantly enhance multi-scale information representation and reconstruction capability. CompEyeNet is evaluated on three authoritative medical image segmentation datasets: MICCAI-CVC-ClinicDB, ISIC2018, and MICCAI-tooth-segmentation, demonstrating its superior performance. Experimental results show that compared to models such as Deeplab, Unet, and the YOLO series, CompEyeNet achieves better performance with fewer parameters. Specifically, compared to the baseline model YOLOv11, CompEyeNet reduces the number of parameters by an average of 38.31%. On key performance metrics, the average Dice coefficient improves by 0.87%, the Jaccard index by 1.53%, Precision by 0.58%, and Recall by 1.11%. These findings verify the advantages of the proposed architecture in terms of parameter efficiency and accuracy, highlighting the broad application potential of bio-inspired attention-fusion hybrid neural networks in neural system modeling and image analysis.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2550065\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065725500650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Compound-Eye-Inspired Multi-Scale Neural Architecture with Integrated Attention Mechanisms.
In the context of neural system structure modeling and complex visual tasks, the effective integration of multi-scale features and contextual information is critical for enhancing model performance. This paper proposes a biologically inspired hybrid neural network architecture - CompEyeNet - which combines the global modeling capacity of transformers with the efficiency of lightweight convolutional structures. The backbone network, multi-attention transformer backbone network (MATBN), integrates multiple attention mechanisms to collaboratively model local details and long-range dependencies. The neck network, compound eye neck network (CENN), introduces high-resolution feature layers and efficient attention fusion modules to significantly enhance multi-scale information representation and reconstruction capability. CompEyeNet is evaluated on three authoritative medical image segmentation datasets: MICCAI-CVC-ClinicDB, ISIC2018, and MICCAI-tooth-segmentation, demonstrating its superior performance. Experimental results show that compared to models such as Deeplab, Unet, and the YOLO series, CompEyeNet achieves better performance with fewer parameters. Specifically, compared to the baseline model YOLOv11, CompEyeNet reduces the number of parameters by an average of 38.31%. On key performance metrics, the average Dice coefficient improves by 0.87%, the Jaccard index by 1.53%, Precision by 0.58%, and Recall by 1.11%. These findings verify the advantages of the proposed architecture in terms of parameter efficiency and accuracy, highlighting the broad application potential of bio-inspired attention-fusion hybrid neural networks in neural system modeling and image analysis.