{"title":"基于自变换器和共形器的多模态信号驾驶员情绪识别。","authors":"Weiguang Wang, Jian Lian, Chuanjie Xu","doi":"10.1142/S0129065725500698","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to develop a multimodal driver emotion recognition system that accurately identifies a driver's emotional state during the driving process by integrating facial expressions, ElectroCardioGram (ECG) and ElectroEncephaloGram (EEG) signals. Specifically, this study proposes a model that employs a Conformer for analyzing facial images to extract visual cues related to the driver's emotions. Additionally, two Autoformers are utilized to process ECG and EEG signals. The embeddings from these three modalities are then fused using a cross-attention mechanism. The integrated features from the cross-attention mechanism are passed through a fully connected layer and classified to determine the driver's emotional state. The experimental results demonstrate that the fusion of visual, physiological and neurological modalities significantly improves the reliability and accuracy of emotion detection. The proposed approach not only offers insights into the emotional processes critical for driver assistance systems and vehicle safety but also lays the foundation for further advancements in emotion recognition area.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550069"},"PeriodicalIF":6.4000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Driver Emotion Recognition Using Multimodal Signals by Combining Conformer and Autoformer.\",\"authors\":\"Weiguang Wang, Jian Lian, Chuanjie Xu\",\"doi\":\"10.1142/S0129065725500698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to develop a multimodal driver emotion recognition system that accurately identifies a driver's emotional state during the driving process by integrating facial expressions, ElectroCardioGram (ECG) and ElectroEncephaloGram (EEG) signals. Specifically, this study proposes a model that employs a Conformer for analyzing facial images to extract visual cues related to the driver's emotions. Additionally, two Autoformers are utilized to process ECG and EEG signals. The embeddings from these three modalities are then fused using a cross-attention mechanism. The integrated features from the cross-attention mechanism are passed through a fully connected layer and classified to determine the driver's emotional state. The experimental results demonstrate that the fusion of visual, physiological and neurological modalities significantly improves the reliability and accuracy of emotion detection. The proposed approach not only offers insights into the emotional processes critical for driver assistance systems and vehicle safety but also lays the foundation for further advancements in emotion recognition area.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2550069\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065725500698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Driver Emotion Recognition Using Multimodal Signals by Combining Conformer and Autoformer.
This study aims to develop a multimodal driver emotion recognition system that accurately identifies a driver's emotional state during the driving process by integrating facial expressions, ElectroCardioGram (ECG) and ElectroEncephaloGram (EEG) signals. Specifically, this study proposes a model that employs a Conformer for analyzing facial images to extract visual cues related to the driver's emotions. Additionally, two Autoformers are utilized to process ECG and EEG signals. The embeddings from these three modalities are then fused using a cross-attention mechanism. The integrated features from the cross-attention mechanism are passed through a fully connected layer and classified to determine the driver's emotional state. The experimental results demonstrate that the fusion of visual, physiological and neurological modalities significantly improves the reliability and accuracy of emotion detection. The proposed approach not only offers insights into the emotional processes critical for driver assistance systems and vehicle safety but also lays the foundation for further advancements in emotion recognition area.