Hussain Ahmad Madni, Hafsa Shujat, Axel De Nardin, Silvia Zottin, Gian Luca Foresti
{"title":"基于实现间通道的无监督脑MRI异常检测。","authors":"Hussain Ahmad Madni, Hafsa Shujat, Axel De Nardin, Silvia Zottin, Gian Luca Foresti","doi":"10.1142/S0129065725500479","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate anomaly detection in brain Magnetic Resonance Imaging (MRI) is crucial for early diagnosis of neurological disorders, yet remains a significant challenge due to the high heterogeneity of brain abnormalities and the scarcity of annotated data. Traditional one-class classification models require extensive training on normal samples, limiting their adaptability to diverse clinical cases. In this work, we introduce MadIRC, an unsupervised anomaly detection framework that leverages Inter-Realization Channels (IRC) to construct a robust nominal model without any reliance on labeled data. We extensively evaluate MadIRC on brain MRI as the primary application domain, achieving a localization AUROC of 0.96 outperforming state-of-the-art supervised anomaly detection methods. Additionally, we further validate our approach on liver CT and retinal images to assess its generalizability across medical imaging modalities. Our results demonstrate that MadIRC provides a scalable, label-free solution for brain MRI anomaly detection, offering a promising avenue for integration into real-world clinical workflows.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550047"},"PeriodicalIF":6.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Brain MRI Anomaly Detection via Inter-Realization Channels.\",\"authors\":\"Hussain Ahmad Madni, Hafsa Shujat, Axel De Nardin, Silvia Zottin, Gian Luca Foresti\",\"doi\":\"10.1142/S0129065725500479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate anomaly detection in brain Magnetic Resonance Imaging (MRI) is crucial for early diagnosis of neurological disorders, yet remains a significant challenge due to the high heterogeneity of brain abnormalities and the scarcity of annotated data. Traditional one-class classification models require extensive training on normal samples, limiting their adaptability to diverse clinical cases. In this work, we introduce MadIRC, an unsupervised anomaly detection framework that leverages Inter-Realization Channels (IRC) to construct a robust nominal model without any reliance on labeled data. We extensively evaluate MadIRC on brain MRI as the primary application domain, achieving a localization AUROC of 0.96 outperforming state-of-the-art supervised anomaly detection methods. Additionally, we further validate our approach on liver CT and retinal images to assess its generalizability across medical imaging modalities. Our results demonstrate that MadIRC provides a scalable, label-free solution for brain MRI anomaly detection, offering a promising avenue for integration into real-world clinical workflows.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2550047\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065725500479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Unsupervised Brain MRI Anomaly Detection via Inter-Realization Channels.
Accurate anomaly detection in brain Magnetic Resonance Imaging (MRI) is crucial for early diagnosis of neurological disorders, yet remains a significant challenge due to the high heterogeneity of brain abnormalities and the scarcity of annotated data. Traditional one-class classification models require extensive training on normal samples, limiting their adaptability to diverse clinical cases. In this work, we introduce MadIRC, an unsupervised anomaly detection framework that leverages Inter-Realization Channels (IRC) to construct a robust nominal model without any reliance on labeled data. We extensively evaluate MadIRC on brain MRI as the primary application domain, achieving a localization AUROC of 0.96 outperforming state-of-the-art supervised anomaly detection methods. Additionally, we further validate our approach on liver CT and retinal images to assess its generalizability across medical imaging modalities. Our results demonstrate that MadIRC provides a scalable, label-free solution for brain MRI anomaly detection, offering a promising avenue for integration into real-world clinical workflows.