基于实现间通道的无监督脑MRI异常检测。

IF 6.4
International journal of neural systems Pub Date : 2025-10-01 Epub Date: 2025-06-27 DOI:10.1142/S0129065725500479
Hussain Ahmad Madni, Hafsa Shujat, Axel De Nardin, Silvia Zottin, Gian Luca Foresti
{"title":"基于实现间通道的无监督脑MRI异常检测。","authors":"Hussain Ahmad Madni, Hafsa Shujat, Axel De Nardin, Silvia Zottin, Gian Luca Foresti","doi":"10.1142/S0129065725500479","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate anomaly detection in brain Magnetic Resonance Imaging (MRI) is crucial for early diagnosis of neurological disorders, yet remains a significant challenge due to the high heterogeneity of brain abnormalities and the scarcity of annotated data. Traditional one-class classification models require extensive training on normal samples, limiting their adaptability to diverse clinical cases. In this work, we introduce MadIRC, an unsupervised anomaly detection framework that leverages Inter-Realization Channels (IRC) to construct a robust nominal model without any reliance on labeled data. We extensively evaluate MadIRC on brain MRI as the primary application domain, achieving a localization AUROC of 0.96 outperforming state-of-the-art supervised anomaly detection methods. Additionally, we further validate our approach on liver CT and retinal images to assess its generalizability across medical imaging modalities. Our results demonstrate that MadIRC provides a scalable, label-free solution for brain MRI anomaly detection, offering a promising avenue for integration into real-world clinical workflows.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550047"},"PeriodicalIF":6.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Brain MRI Anomaly Detection via Inter-Realization Channels.\",\"authors\":\"Hussain Ahmad Madni, Hafsa Shujat, Axel De Nardin, Silvia Zottin, Gian Luca Foresti\",\"doi\":\"10.1142/S0129065725500479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate anomaly detection in brain Magnetic Resonance Imaging (MRI) is crucial for early diagnosis of neurological disorders, yet remains a significant challenge due to the high heterogeneity of brain abnormalities and the scarcity of annotated data. Traditional one-class classification models require extensive training on normal samples, limiting their adaptability to diverse clinical cases. In this work, we introduce MadIRC, an unsupervised anomaly detection framework that leverages Inter-Realization Channels (IRC) to construct a robust nominal model without any reliance on labeled data. We extensively evaluate MadIRC on brain MRI as the primary application domain, achieving a localization AUROC of 0.96 outperforming state-of-the-art supervised anomaly detection methods. Additionally, we further validate our approach on liver CT and retinal images to assess its generalizability across medical imaging modalities. Our results demonstrate that MadIRC provides a scalable, label-free solution for brain MRI anomaly detection, offering a promising avenue for integration into real-world clinical workflows.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2550047\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065725500479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑磁共振成像(MRI)中准确的异常检测对于神经系统疾病的早期诊断至关重要,但由于脑异常的高度异质性和注释数据的缺乏,仍然是一个重大挑战。传统的一类分类模型需要对正常样本进行大量的训练,限制了其对不同临床病例的适应性。在这项工作中,我们引入了MadIRC,这是一个无监督的异常检测框架,它利用实现间通道(IRC)来构建一个鲁棒的标称模型,而不依赖于任何标记数据。我们在脑MRI上广泛评估了MadIRC作为主要应用领域,实现了0.96的定位AUROC,优于最先进的监督异常检测方法。此外,我们进一步在肝脏CT和视网膜图像上验证我们的方法,以评估其在医学成像模式中的普遍性。我们的研究结果表明,MadIRC为脑MRI异常检测提供了一种可扩展的、无标签的解决方案,为整合到现实世界的临床工作流程提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Brain MRI Anomaly Detection via Inter-Realization Channels.

Accurate anomaly detection in brain Magnetic Resonance Imaging (MRI) is crucial for early diagnosis of neurological disorders, yet remains a significant challenge due to the high heterogeneity of brain abnormalities and the scarcity of annotated data. Traditional one-class classification models require extensive training on normal samples, limiting their adaptability to diverse clinical cases. In this work, we introduce MadIRC, an unsupervised anomaly detection framework that leverages Inter-Realization Channels (IRC) to construct a robust nominal model without any reliance on labeled data. We extensively evaluate MadIRC on brain MRI as the primary application domain, achieving a localization AUROC of 0.96 outperforming state-of-the-art supervised anomaly detection methods. Additionally, we further validate our approach on liver CT and retinal images to assess its generalizability across medical imaging modalities. Our results demonstrate that MadIRC provides a scalable, label-free solution for brain MRI anomaly detection, offering a promising avenue for integration into real-world clinical workflows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信