{"title":"Functional Magnetic Resonance Imaging-Specific Alternations in the Default Mode Network in Obsessive-Compulsive Disorder: A Voxel-Based Meta-Analysis.","authors":"Jianping Yu, Qianwen Xu, Lisha Ma, Yueqi Huang, Wenjing Zhu, Yan Liang, Yunzhan Wang, Wenxin Tang, Cheng Zhu, Xiaoying Jiang","doi":"10.1016/j.bpsc.2024.12.001","DOIUrl":"10.1016/j.bpsc.2024.12.001","url":null,"abstract":"<p><strong>Background: </strong>Obsessive-compulsive disorder (OCD) is a common and debilitating mental disorder. Neuroimaging studies have highlighted that a dysfunctional default mode network (DMN) plays a key role in the pathophysiological mechanisms of OCD. However, findings of impaired DMN regions in OCD have been inconsistent. We used meta-analysis to identify functional magnetic resonance imaging (fMRI)-specific abnormalities of the DMN in OCD.</p><p><strong>Methods: </strong>PubMed, Web of Science, and Embase were searched to screen resting-state fMRI studies of the amplitude of low-frequency fluctuation/fractional amplitude of low-frequency fluctuation (ALFF/fALFF) and regional homogeneity of the DMN in patients with OCD. Based on the activation likelihood estimation algorithm, we compared all patients with OCD and a control group in a primary meta-analysis and analyzed unmedicated OCD patients without comorbidities in secondary meta-analyses.</p><p><strong>Results: </strong>A total of 26 eligible studies with 1219 patients with OCD (707 men) and 1238 healthy control participants (684 men) were included in the primary meta-analysis. We identified specific changes in brain regions of the DMN, mainly in the left medial frontal gyrus, bilateral superior temporal gyrus, bilateral inferior parietal lobule, bilateral precuneus, bilateral posterior cingulate cortex, and right parahippocampal gyrus.</p><p><strong>Conclusions: </strong>Patients with OCD showed dysfunction in the DMN, including impaired local important nodal brain regions. The parietal cingulate cortex/precuneus appeared to be the most affected regions within the DMN, providing valuable insights into understanding the potential pathophysiology of OCD and targets for clinical interventions.</p>","PeriodicalId":93900,"journal":{"name":"Biological psychiatry. Cognitive neuroscience and neuroimaging","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142831220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel M McCalley, Kaitlin R Kinney, Navneet Kaur, Julia P Wolf, Ingrid E Contreras, Joshua P Smith, Sarah W Book, Colleen A Hanlon
{"title":"A Randomized Controlled Trial of Medial Prefrontal Cortex Theta Burst Stimulation for Cocaine Use Disorder: A Three-Month Feasibility and Brain Target Engagement Study.","authors":"Daniel M McCalley, Kaitlin R Kinney, Navneet Kaur, Julia P Wolf, Ingrid E Contreras, Joshua P Smith, Sarah W Book, Colleen A Hanlon","doi":"10.1016/j.bpsc.2024.11.022","DOIUrl":"10.1016/j.bpsc.2024.11.022","url":null,"abstract":"<p><strong>Background: </strong>Cue-induced craving precipitates relapse in drug and alcohol use disorders. Theta burst stimulation (TBS) to the left frontal pole of the medial prefrontal cortex (MPFC) has previously been shown to reduce drinking and brain reactivity to alcohol cues. In this randomized, double-blind, sham-controlled target engagement study, we aimed to assess whether TBS has similar effects in individuals with cocaine use disorder.</p><p><strong>Methods: </strong>Thirty-three participants in intensive outpatient treatment received either real or sham TBS over 10 sessions across 3 weeks (36,000 pulses total; continuous TBS, 110% resting motor threshold, 3600 pulses/session). TBS was administered on days of behavioral counseling. Twenty-five individuals completed all 10 TBS sessions. Brain reactivity to cocaine cues was measured using functional magnetic resonance imaging at baseline, 1 month, 2 months, and 3 months.</p><p><strong>Results: </strong>Cocaine abstinence during the 3-month follow-up period was greater in the real TBS group (1-month: 92.0%, 2-month: 100.0%, 3-month: 85.0%) than sham (1-month: 66.6%, 2-month: 66.6%, 3-month: 66.6%), although the difference was not statistically significant (1-month odds ratio [OR] = 6.00, p = .14; 2-month OR = 14.30, p = .09; and 3-month OR = 2.75, p = .30). However, there was a significant effect on cocaine cue reactivity (treatment effect: F<sub>1,365</sub> = 8.92, p = .003; time × treatment interaction: F<sub>3,365</sub> = 12.88, p < .001). Real TBS reduced cocaine cue reactivity in the MPFC (F<sub>3,72</sub> = 5.46, p = .02), the anterior cingulate (F<sub>3,72</sub> = 3.03, p = .04), and the insula (F<sub>3,72</sub> = 3.60, p = .02).</p><p><strong>Conclusions: </strong>This early-stage trial demonstrates that TBS to the MPFC reduces brain reactivity to cocaine cues in key nodes of the salience network in treatment-seeking cocaine users. Future, well-powered trials are warranted to evaluate clinical efficacy outcomes.</p>","PeriodicalId":93900,"journal":{"name":"Biological psychiatry. Cognitive neuroscience and neuroimaging","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elisa Xu, Samantha Pitts, Jacob Dahill-Fuchel, Sara Scherrer, Tanya Nauvel, Jacqueline Guerra Overton, Patricio Riva-Posse, Andrea Crowell, Martijn Figee, Sankaraleengam Alagapan, Christopher J Rozell, Ki Sueng Choi, Helen S Mayberg, Allison C Waters
{"title":"Neural Interoceptive Processing Is Modulated by Deep Brain Stimulation to Subcallosal Cingulate Cortex for Treatment-Resistant Depression.","authors":"Elisa Xu, Samantha Pitts, Jacob Dahill-Fuchel, Sara Scherrer, Tanya Nauvel, Jacqueline Guerra Overton, Patricio Riva-Posse, Andrea Crowell, Martijn Figee, Sankaraleengam Alagapan, Christopher J Rozell, Ki Sueng Choi, Helen S Mayberg, Allison C Waters","doi":"10.1016/j.bpsc.2024.11.021","DOIUrl":"10.1016/j.bpsc.2024.11.021","url":null,"abstract":"<p><strong>Background: </strong>Symptoms of depression are associated with impaired interoceptive processing of bodily sensation. The antidepressant effects of subcallosal cingulate deep brain stimulation (SCC DBS) include acute change in bodily sensation, and the SCC target is connected to cortical regions critically involved in interoception. This study tested whether cortical interoceptive processing is modulated by SCC DBS for treatment-resistant depression.</p><p><strong>Methods: </strong>In 8 patients receiving SCC DBS for treatment-resistant depression, we used electroencephalography to measure the heartbeat-evoked potential (HEP), a putative readout of neural interoception, before surgery and over 6 months of treatment with DBS. We also examined the immediate effect of DBS on the HEP and correlated HEP change over time with outcomes of treatment for depression.</p><p><strong>Results: </strong>HEP amplitude increased from baseline to 6 months of DBS treatment, and this increase was associated with faster antidepressant response. Recording with stimulation on (vs. off) had an immediate effect on HEP in the laboratory. Overall, modulation of the HEP was most pronounced in sensors over the left parietal cortex.</p><p><strong>Conclusions: </strong>Brain-based evidence implies an interoceptive element in the mechanism of treatment efficacy with DBS for treatment-resistant depression and substantiates a theorized connection between interoception and depression.</p>","PeriodicalId":93900,"journal":{"name":"Biological psychiatry. Cognitive neuroscience and neuroimaging","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ya-Yun Chen, Morgan Lindenmuth, Tae-Ho Lee, Jacob Lee, Brooks Casas, Jungmeen Kim-Spoon
{"title":"Neural Signatures of Cognitive Control Predict Future Adolescent Substance Use Onset and Frequency.","authors":"Ya-Yun Chen, Morgan Lindenmuth, Tae-Ho Lee, Jacob Lee, Brooks Casas, Jungmeen Kim-Spoon","doi":"10.1016/j.bpsc.2024.11.020","DOIUrl":"10.1016/j.bpsc.2024.11.020","url":null,"abstract":"<p><strong>Background: </strong>Adolescent substance use is a significant predictor of future addiction and related disorders. Understanding neural mechanisms underlying substance use initiation and frequency during adolescence is critical for early prevention and intervention.</p><p><strong>Methods: </strong>The current longitudinal study followed 91 substance-naïve adolescents annually for 7 years from ages 14 to 21 years to identify potential neural precursors that predict substance use initiation and frequency. Cognitive control processes were examined using the Multi-Source Interference Task to assess functional neural connectivity. A questionnaire was used to assess substance use frequency.</p><p><strong>Results: </strong>Stronger connectivity between the dorsal anterior cingulate cortex (dACC) and dorsolateral prefrontal cortex (dlPFC) at time 1 predicted a delayed onset of substance use, indicative of a protective effect. A notable decline in this dACC-dlPFC connectivity was observed 1 year prior to substance use initiation. Conversely, lower connectivity of the dACC with the supplementary motor area and heightened connectivity of the anterior insula with the dorsal medial prefrontal cortex and angular gyrus were predictive of greater frequency of future substance use. These findings remained after controlling for demographic and socioeconomic covariates.</p><p><strong>Conclusions: </strong>This study highlights the critical role of cognitive control-related neural connectivity in predicting substance use initiation and frequency during adolescence. The results imply that efforts to strengthen and monitor the development of the top-down cognitive control system in the brain from early adolescence can be protective and deter progression into problematic substance use. Furthermore, for adolescents with heightened frequency of substance use, interventions may prove more effective by targeting interoceptive processes in cognitive control training.</p>","PeriodicalId":93900,"journal":{"name":"Biological psychiatry. Cognitive neuroscience and neuroimaging","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ethan H Willbrand, Samira A Maboudian, Matthew V Elliott, Gabby M Kellerman, Sheri L Johnson, Kevin S Weiner
{"title":"Variable Presence of an Evolutionarily New Brain Structure Is Related to Trait Impulsivity.","authors":"Ethan H Willbrand, Samira A Maboudian, Matthew V Elliott, Gabby M Kellerman, Sheri L Johnson, Kevin S Weiner","doi":"10.1016/j.bpsc.2024.11.015","DOIUrl":"10.1016/j.bpsc.2024.11.015","url":null,"abstract":"<p><strong>Background: </strong>Impulsivity is a multidimensional construct reflecting poor constraint over one's behaviors. Clinical psychology research has identified separable impulsivity dimensions that are each unique transdiagnostic indicators for psychopathology. However, despite this apparent clinical importance, the shared and unique neuroanatomical correlates of these factors remain largely unknown. Concomitantly, neuroimaging research has identified variably present human brain structures implicated in cognition and disorder: the folds (sulci) of the cerebral cortex located in the latest-developing and most evolutionarily expanded hominoid-specific association cortices.</p><p><strong>Methods: </strong>We tethered these 2 fields to test whether variability in one such structure in the anterior cingulate cortex (ACC)-the paracingulate sulcus (PCGS)-was related to individual differences in trait impulsivity. A total of 120 adult participants with internalizing or externalizing psychopathology completed a magnetic resonance imaging scan and the Three-Factor Impulsivity Index. Using precision imaging techniques, we manually identified the PCGS, when present, and acquired quantitative folding metrics (PCGS length and ACC local gyrification index).</p><p><strong>Results: </strong>Neuroanatomical-behavioral analyses revealed that participants with leftward or symmetrical PCGS patterns had greater severity of Lack of Follow Through (LFT)-which captures inattention and lack of perseverance-than those with rightward asymmetry. Neuroanatomical-functional analyses identified that the PCGS colocalized with a focal locus found in a neuroimaging meta-analysis on a feature underlying LFT. Neither quantitative folding metric related to any impulsivity dimension.</p><p><strong>Conclusions: </strong>This study advances understanding of the neuroanatomical correlates of impulsivity and establishes the notion that the topographical organization of distinct, hominoid-specific cortical expanses underlies separable impulsivity dimensions with robust, transdiagnostic implications for psychopathology.</p>","PeriodicalId":93900,"journal":{"name":"Biological psychiatry. Cognitive neuroscience and neuroimaging","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chaithanya Leon, Simran Kaur, Rajesh Sagar, Prashant Tayade, Ratna Sharma
{"title":"Cortical Hypoactivation of Frontal Areas Modulates Resting Electroencephalography Microstates in Children With Attention-Deficit/Hyperactivity Disorder.","authors":"Chaithanya Leon, Simran Kaur, Rajesh Sagar, Prashant Tayade, Ratna Sharma","doi":"10.1016/j.bpsc.2024.11.012","DOIUrl":"10.1016/j.bpsc.2024.11.012","url":null,"abstract":"<p><strong>Background: </strong>In the current study, we examined electroencephalography (EEG) microstate alterations and their neural generators during resting state in children with attention-deficit/hyperactivity disorder (ADHD) to explore a potential state biomarker.</p><p><strong>Methods: </strong>A total of 76 participants, 38 with combined-type ADHD and 38 neurotypical children, took part in the study. Five-minute resting (eyes-open) 128 channel EEG data were acquired, and 2 minutes of clean EEG data were analyzed for microstates, its sources, and connectivity in both groups. Between-groups comparisons were done for microstate parameters using modified k-means clustering with Cartool software. Furthermore, the cortical sources and functional connectivity of significant microstate maps were explored using LORETA software. Subsequently microstate parameters were correlated with the behavioral scores from the Conners' Parent Rating Scale.</p><p><strong>Results: </strong>Among the microstate parameters examined, children with ADHD displayed significant differences (p < .05) in time frames and time coverage of map B (decreased) and transition probability of map D (increased). Interestingly, source analysis of both microstate maps showed hypoactivation of frontal areas predominantly while functional connectivity showed hyperconnectivity between the medial frontal gyrus and anterior cingulate gyrus (executive function area) for map B and hypoconnectivity between the medial frontal gyrus and middle temporal gyrus (both are suggested to be part of default mode network areas) for map D. Further, cross-spectral density values of map B were found to be correlated with executive function scores from the Conners' questionnaire.</p><p><strong>Conclusions: </strong>EEG microstate features, together with source and connectivity measures, could help differentiate children with ADHD from neurotypical children. The hypoactivation of predominantly frontal areas and their connectivity was found to determine microstate maps.</p>","PeriodicalId":93900,"journal":{"name":"Biological psychiatry. Cognitive neuroscience and neuroimaging","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Justin L C Santos, Nathaniel G Harnett, Sanne J H van Rooij, Timothy D Ely, Tanja Jovanovic, Lauren A M Lebois, Francesca L Beaudoin, Xinming An, Thomas C Neylan, Sarah D Linnstaedt, Laura T Germine, Kenneth A Bollen, Scott L Rauch, John P Haran, Alan B Storrow, Christopher Lewandowski, Paul I Musey, Phyllis L Hendry, Sophia Sheikh, Christopher W Jones, Brittany E Punches, Jose L Pascual, Mark J Seamon, Erica Harris, Claire Pearson, David A Peak, Roland C Merchant, Robert M Domeier, Niels K Rathlev, Brian J O'Neil, Paulina Sergot, Leon D Sanchez, Steven E Bruce, Diego A Pizzagalli, Steven E Harte, Kerry J Ressler, Karestan C Koenen, Samuel A McLean, Jennifer S Stevens
{"title":"Social Buffering of Posttraumatic Stress Disorder: Longitudinal Effects and Neural Mediators.","authors":"Justin L C Santos, Nathaniel G Harnett, Sanne J H van Rooij, Timothy D Ely, Tanja Jovanovic, Lauren A M Lebois, Francesca L Beaudoin, Xinming An, Thomas C Neylan, Sarah D Linnstaedt, Laura T Germine, Kenneth A Bollen, Scott L Rauch, John P Haran, Alan B Storrow, Christopher Lewandowski, Paul I Musey, Phyllis L Hendry, Sophia Sheikh, Christopher W Jones, Brittany E Punches, Jose L Pascual, Mark J Seamon, Erica Harris, Claire Pearson, David A Peak, Roland C Merchant, Robert M Domeier, Niels K Rathlev, Brian J O'Neil, Paulina Sergot, Leon D Sanchez, Steven E Bruce, Diego A Pizzagalli, Steven E Harte, Kerry J Ressler, Karestan C Koenen, Samuel A McLean, Jennifer S Stevens","doi":"10.1016/j.bpsc.2024.11.011","DOIUrl":"10.1016/j.bpsc.2024.11.011","url":null,"abstract":"<p><strong>Background: </strong>Posttraumatic stress disorder (PTSD) is a well-characterized psychiatric disorder that features changes in mood and arousal following traumatic events. Previous animal and human studies of social support during the peritraumatic window have demonstrated a buffering effect with regard to acute biological and psychological stress symptoms. Fewer studies have explored the magnitude of and mechanism through which early posttrauma social support can reduce longitudinal PTSD severity.</p><p><strong>Methods: </strong>In this study, we investigated the beneficial impact of social support on longitudinal PTSD symptoms and probed brain regions sensitive to this buffering phenomenon, such as the amygdala and ventromedial prefrontal cortex. In the multisite AURORA study, 315 participants reported PTSD symptoms (PTSD Checklist for DSM-5) and perceived emotional support (Patient-Reported Outcomes Measurement Information System) at 2 weeks, 8 weeks, 3 months, and 6 months post emergency department visit. Additionally, neuroimaging data were collected at 2 weeks posttrauma.</p><p><strong>Results: </strong>We hypothesized that early posttrauma social support would be linked with greater fractional anisotropic values in white matter tracts that have known connectivity between the amygdala and prefrontal cortex and would predict reduced neural reactivity to social threat cues in the amygdala. Interestingly, while we observed greater fractional anisotropy in the bilateral cingulum and bilateral uncinate fasciculus as a function of early posttrauma emotional support, we also identified greater threat reactivity in the precuneus/posterior cingulate, a component of the default mode network.</p><p><strong>Conclusions: </strong>Our findings suggest that the neurocircuitry underlying the response to social threat cues is facilitated through broader pathways that involve the posterior hub of the default mode network.</p>","PeriodicalId":93900,"journal":{"name":"Biological psychiatry. Cognitive neuroscience and neuroimaging","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142741712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Schinz, Antonia Neubauer, Rebecca Hippen, Julia Schulz, Hongwei Bran Li, Melissa Thalhammer, Benita Schmitz-Koep, Aurore Menegaux, Jil Wendt, Sevilay Ayyildiz, Felix Brandl, Josef Priller, Michael Uder, Claus Zimmer, Dennis M Hedderich, Christian Sorg
{"title":"Claustrum Volumes Are Lower in Schizophrenia and Mediate Patients' Attentional Deficits.","authors":"David Schinz, Antonia Neubauer, Rebecca Hippen, Julia Schulz, Hongwei Bran Li, Melissa Thalhammer, Benita Schmitz-Koep, Aurore Menegaux, Jil Wendt, Sevilay Ayyildiz, Felix Brandl, Josef Priller, Michael Uder, Claus Zimmer, Dennis M Hedderich, Christian Sorg","doi":"10.1016/j.bpsc.2024.11.013","DOIUrl":"10.1016/j.bpsc.2024.11.013","url":null,"abstract":"<p><strong>Background: </strong>While the last decade of extensive research revealed the prominent role of the claustrum for mammalian forebrain organization (i.e., widely distributed claustral-cortical circuits coordinate basic cognitive functions such as attention), it is poorly understood whether the claustrum is relevant for schizophrenia and related cognitive symptoms. We hypothesized that claustrum volumes are lower in schizophrenia and also that potentially lower volumes mediate patients' attention deficits.</p><p><strong>Methods: </strong>Based on T1-weighted magnetic resonance imaging, advanced automated claustrum segmentation, and attention symbol coding task in 90 patients with schizophrenia and 96 healthy control participants from 2 independent sites, the COBRE open-source database and Munich dataset, we compared total intracranial volume-normalized claustrum volumes and symbol coding task scores across groups via analysis of covariance and related variables via correlation and mediation analysis.</p><p><strong>Results: </strong>Patients had lower claustrum volumes of about 13% (p < .001, Hedges' g = 0.63), which not only correlated with (r = 0.24, p = .014) but also mediated lower symbol coding task scores (indirect effect ab = -1.30 ± 0.69; 95% CI, -3.73 to -1.04). Results were not confounded by age, sex, global and claustrum-adjacent gray matter changes, scanner site, smoking, and medication.</p><p><strong>Conclusions: </strong>Results demonstrate lower claustrum volumes that mediate patients' attention deficits in schizophrenia. Data indicate the claustrum as being relevant for schizophrenia pathophysiology and cognitive functioning.</p>","PeriodicalId":93900,"journal":{"name":"Biological psychiatry. Cognitive neuroscience and neuroimaging","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antoine Lutz, Oussama Abdoun, Yair Dor-Ziderman, Fynn-Mathis Trautwein, Aviva Berkovich-Ohana
{"title":"An Overview of Neurophenomenological Approaches to Meditation and Their Relevance to Clinical Research.","authors":"Antoine Lutz, Oussama Abdoun, Yair Dor-Ziderman, Fynn-Mathis Trautwein, Aviva Berkovich-Ohana","doi":"10.1016/j.bpsc.2024.11.008","DOIUrl":"10.1016/j.bpsc.2024.11.008","url":null,"abstract":"<p><p>There is a renewed interest in taking phenomenology seriously in consciousness research, contemporary psychiatry, and neurocomputation. The neurophenomenology research program, pioneered by Varela, rigorously examines subjective experience using first-person methodologies, inspired by phenomenology and contemplative practices. This review explores recent advancements in neurophenomenological approaches, particularly their application to meditation practices and potential clinical research translations. First, we examine innovative multidimensional phenomenological assessment tools designed to capture subtle, dynamic shifts in experiential content and structures of consciousness during meditation. These experience sampling approaches enable shedding new light on the mechanisms and dynamic trajectories of meditation practice and retreat. Second, we highlight how empirical studies in neurophenomenology leverage the expertise of experienced meditators to deconstruct aversive and self-related processes, providing detailed first-person reports that guide researchers in identifying novel behavioral and neurodynamic markers associated with pain regulation, self-dissolution, and acceptance of mortality. Finally, we discuss a recent framework, deep computational neurophenomenology, that updates the theoretical ambitions of neurophenomenology to naturalize phenomenology. This framework uses the formalism of deep parametric active inference, where parametric depth refers to a property of generative models that can form beliefs about the parameters of their own modeling process. Collectively, these methodological innovations, centered around rigorous first-person investigation, highlight the potential of epistemologically beneficial mutual constraints among phenomenological, computational, and neurophysiological domains. This could contribute to an integrated understanding of the biological basis of mental illness, its treatment, and its tight connections to the lived experience of the patient.</p>","PeriodicalId":93900,"journal":{"name":"Biological psychiatry. Cognitive neuroscience and neuroimaging","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Revisiting Resting-State Functional Connectivity of the Amygdala and Subgenual Anterior Cingulate Cortex in Adolescents and Adults With Depression.","authors":"Shijia Fan, Yuxi Wang, Yin Wang, Yinyin Zang","doi":"10.1016/j.bpsc.2024.11.004","DOIUrl":"10.1016/j.bpsc.2024.11.004","url":null,"abstract":"<p><strong>Background: </strong>Adolescent depression is a growing public health concern, and neuroimaging offers a promising approach to its pathology. We focused on the functional connectivity of the amygdala and subgenual anterior cingulate cortex (sgACC), which is theoretically important in major depressive disorder (MDD), but empirical evidence has remained inconsistent. This discrepancy is likely due to the limited statistical power of small sample sizes.</p><p><strong>Methods: </strong>We rigorously examined sgACC-amygdala connectivity in adolescents and adults with depression using data from the Healthy Brain Network (n = 321; 170 female), the ABCD (Adolescent Brain Cognitive Development) Study (n = 141; 56 female), the Boston Adolescent Neuroimaging of Depression and Anxiety study (n = 108; 75 female), and the REST-meta-MDD project (n = 1436; 880 female). Linear mixed models, Bayesian factor analyses, and meta-analysis were used to assess connectivity.</p><p><strong>Results: </strong>Our analyses revealed that sgACC-amygdala connectivity in adolescents with MDD was comparable to that in healthy control individuals, whereas adults with recurrent MDD exhibited reduced connectivity. Resampling analysis demonstrated that small sample sizes (i.e., n < 30 MDD cases) tend to inflate effects, potentially leading to misinterpretations.</p><p><strong>Conclusions: </strong>These findings clarify the state of sgACC-amygdala connectivity in MDD and underscore the importance of refining neurocognitive models separately for adolescents and adults. The study also highlights the necessity for large-scale replication studies to ensure robust and reliable findings.</p>","PeriodicalId":93900,"journal":{"name":"Biological psychiatry. Cognitive neuroscience and neuroimaging","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}