Jivesh Ramduny, Lucina Q Uddin, Tamara Vanderwal, Eric Feczko, Damien A Fair, Clare Kelly, Arielle Baskin-Sommers
{"title":"Representing Brain-Behavior Associations by Retaining High-Motion Minoritized Youth.","authors":"Jivesh Ramduny, Lucina Q Uddin, Tamara Vanderwal, Eric Feczko, Damien A Fair, Clare Kelly, Arielle Baskin-Sommers","doi":"10.1016/j.bpsc.2025.01.014","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Population neuroscience datasets provide an opportunity for researchers to estimate reproducible effect sizes for brain-behavior associations because of their large sample sizes. However, these datasets undergo strict quality control to mitigate sources of noise, such as head motion. This practice often excludes a disproportionate number of minoritized individuals.</p><p><strong>Methods: </strong>We used motion-ordering and motion-ordering+resampling (bagging) to test whether these methods preserve functional magnetic resonance imaging (fMRI) data in the Adolescent Brain Cognitive Development (ABCD) Study (N = 5733). For the 2 methods, brain-behavior associations were computed as the partial Spearman's rank correlations (R<sub>s</sub>) between functional connectivity and cognitive performance (NIH Cognition Toolbox) as well as externalizing and internalizing psychopathology (Child Behavior Checklist) while adjusting for participant sex assigned at birth and head motion.</p><p><strong>Results: </strong>Black and Hispanic youth exhibited excess head motion relative to data collected from White youth and were discarded disproportionately when conventional approaches were used. Motion-ordering and bagging methods retained more than 99% of Black and Hispanic youth. Both methods produced reproducible brain-behavior associations across low-/high-motion racial/ethnic groups based on motion-limited fMRI data.</p><p><strong>Conclusions: </strong>The motion-ordering and bagging methods are 2 feasible approaches that can enhance sample representation for testing brain-behavior associations and that result in reproducible effect sizes in diverse populations.</p>","PeriodicalId":93900,"journal":{"name":"Biological psychiatry. Cognitive neuroscience and neuroimaging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological psychiatry. Cognitive neuroscience and neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpsc.2025.01.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Population neuroscience datasets provide an opportunity for researchers to estimate reproducible effect sizes for brain-behavior associations because of their large sample sizes. However, these datasets undergo strict quality control to mitigate sources of noise, such as head motion. This practice often excludes a disproportionate number of minoritized individuals.
Methods: We used motion-ordering and motion-ordering+resampling (bagging) to test whether these methods preserve functional magnetic resonance imaging (fMRI) data in the Adolescent Brain Cognitive Development (ABCD) Study (N = 5733). For the 2 methods, brain-behavior associations were computed as the partial Spearman's rank correlations (Rs) between functional connectivity and cognitive performance (NIH Cognition Toolbox) as well as externalizing and internalizing psychopathology (Child Behavior Checklist) while adjusting for participant sex assigned at birth and head motion.
Results: Black and Hispanic youth exhibited excess head motion relative to data collected from White youth and were discarded disproportionately when conventional approaches were used. Motion-ordering and bagging methods retained more than 99% of Black and Hispanic youth. Both methods produced reproducible brain-behavior associations across low-/high-motion racial/ethnic groups based on motion-limited fMRI data.
Conclusions: The motion-ordering and bagging methods are 2 feasible approaches that can enhance sample representation for testing brain-behavior associations and that result in reproducible effect sizes in diverse populations.