Wenwen Cheng, Jin Zhang, Na Lin, Ding Yuan, Shuai Zhang, Zhonggang Yang, Tianyi Cao
{"title":"Preparation and performance analysis of zinc-iron-based nanomaterials for targeted transport.","authors":"Wenwen Cheng, Jin Zhang, Na Lin, Ding Yuan, Shuai Zhang, Zhonggang Yang, Tianyi Cao","doi":"10.1177/09592989241296437","DOIUrl":"https://doi.org/10.1177/09592989241296437","url":null,"abstract":"<p><strong>Background: </strong>Nanomaterials have applications in traditional Chinese medicine in the fields of medical equipment manufacturing, targeted transportation, and drug synergistic therapy.</p><p><strong>Objective: </strong>The research aims to discuss the performance and performance of zinc-iron-based nanomaterials in medical drug delivery and synergistic drug therapy.</p><p><strong>Methods: </strong>Using Prussian materials as precursors, magnetic zinc-iron nanomaterials were prepared by ZnCl<sub>2</sub> and K<sub>3</sub>[Fe (CN)<sub>6</sub>]. Moreover, the morphology and composition of the material were analyzed.</p><p><strong>Results: </strong>X-ray analysis was conducted on the prepared Zn<sub>3</sub>[Fe (CN)<sub>6</sub>]<sub>2</sub>·xH<sub>2</sub>O nanomaterials, and their purity met the design requirements. At the same time, drug loading analysis was conducted on Zn<sub>3</sub>[Fe(CN)<sub>6</sub>]<sub>2</sub>·xH<sub>2</sub>O, and the release of capsaicin reached 86.3% under a certain phosphate buffer solution. Meanwhile, Zn<sub>3</sub>[Fe (CN)<sub>6</sub>]<sub>2</sub>·xH2O loaded tetracycline could release up to 90% in phosphate buffer solution. Antibacterial tests were conducted on self-made Zn<sub>3</sub>[Fe(CN)<sub>6</sub>]<sub>2</sub>·xH<sub>2</sub>O samples and ZnFe<sub>2</sub>O<sub>4</sub>/ZnO. The Zn<sub>3</sub>[Fe(CN)<sub>6</sub>]<sub>2</sub>·xH<sub>2</sub>O samples showed a more significant inhibitory effect on cancer cells after loading with capsaicin.</p><p><strong>Conclusion: </strong>The zinc-iron-based nanomaterials prepared by the research have excellent performance in drug loading and safety, indicating their significant potential for development in the medical field.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":"36 1","pages":"3-14"},"PeriodicalIF":1.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143413416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Temperature dependence of the protective effect of pressurized dissolution of xenon gas during cold storage of cells.","authors":"Kenshi Mimura, Rina Sakai, Kazuhiro Yoshida, Masanobu Ujihira","doi":"10.3233/BME-240105","DOIUrl":"10.3233/BME-240105","url":null,"abstract":"<p><strong>Background: </strong>The preservation period afforded by cold storage of cells is short. However, the use of rare gases for cold storage as a means of extending the period of preservation would be highly beneficial.</p><p><strong>Objective: </strong>To examine the effect of temperature on the protective effect of cold storage of cells using pressurized dissolution of xenon gas, with particular focus on the inhibition of substance transport by viscosity.</p><p><strong>Methods: </strong>Human dermal fibroblast monolayers incubated in a culture dish for 48 h were used as a test sample, with culture medium used as a preservation solution. Samples were placed into a pressure-resistant vessel, which was pressurized with xenon gas at 0 or 0.5 MPa, and cells were stored at 0 to 5°C for 18 h. Cell activity was evaluated by tetrazolium salt assay. The viscosity of the medium under pressurization at each storage temperature was estimated.</p><p><strong>Results: </strong>The maximum protective effect against cell damage of cold storage with pressurized dissolution of xenon gas was observed at 4°C. An increase in estimated viscosity by pressurization was correlated with increased cell activity at 4°C.</p><p><strong>Conclusion: </strong>Analysis of the temperature dependence of the protective effect against cell damage of cold storage with pressurized dissolution of xenon gas revealed that the most effective temperature is 4°C. The data also suggest that increased viscosity due to pressurization plays a role in the protective effect.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"530-535"},"PeriodicalIF":1.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xionglin Chen, Jie Zhang, Xiaoming Cao, He Jiang, Zhiren Wu, Zi du Zeng, Chen Jiang, Hui Chen
{"title":"SIKVAV promotion proliferation of vascular endothelial cells and related mechanisms.","authors":"Xionglin Chen, Jie Zhang, Xiaoming Cao, He Jiang, Zhiren Wu, Zi du Zeng, Chen Jiang, Hui Chen","doi":"10.3233/BME-240018","DOIUrl":"10.3233/BME-240018","url":null,"abstract":"<p><strong>Background: </strong>Vascular endothelial injury, a key factor in diabetic foot ulcers (DFUs) pathogenesis, is linked to the impaired proliferation and migration of vascular endothelial cells, modulated by hypoxia-inducible factor, growth factors, and inflammatory elements.</p><p><strong>Objective: </strong>The present study assesses the role of SIKVAV (Ser-Ile-Lys-Val-Ala-Val), a peptide shown to enhance cell proliferation and migration, on mouse aortic endothelial cell (MAEC) and the corresponding molecular mechanisms.</p><p><strong>Methods: </strong>MAEC were treated with SIKVAV at 0, 100, 200, 400, and 600 μg/mL for 0, 24, 48, and 72 h. Cell viability was tested using the CCK-8 assay. Proliferating cell nuclear antigen (PCNA), extracellular signal-regulated kinase 1/2 (ERK1/2), and protein kinase B (Akt) levels were measured by qRT-PCR and western blot.</p><p><strong>Results: </strong>SIKVAV augmented PCNA mRNA expression and stimulated vascular endothelial cell proliferation in a concentration and time-dependent fashion. Furthermore, it amplified the expression of p-ERK1/2 and p-Akt, pivotal components of the mitogen-activated protein kinase (MAPK)/ERK1/2 and phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathways. The inhibition of these pathways suppressed PCNA mRNA expression, cell proliferation rate, and decreased p-ERK1/2 and p-Akt levels, highlighting SIKVAV's role in promoting vascular endothelial cell proliferation via these pathways.</p><p><strong>Conclusion: </strong>The results of this study confirmed that SIKVAV grafted onto scaffolds can accelerate the proliferation of vascular endothelial cells for the therapy of skin wounds, and provide a theoretical basis for its application in ischemic disease as synthesized biomaterials scaffolds of tissue engineering.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"499-508"},"PeriodicalIF":1.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extract from <i>Falcaria vulgaris</i> loaded with exosomes for the treatment of hypertension in pregnant mice: <i>In vitro</i> and <i>In vivo</i> investigations.","authors":"Jing Chen, Huan Wang, Jing Zhu","doi":"10.3233/BME-240053","DOIUrl":"10.3233/BME-240053","url":null,"abstract":"<p><strong>Background: </strong>Hypertensive disorders during pregnancy pose significant risks to both maternal and fetal health, necessitating safe and effective therapeutic interventions.</p><p><strong>Objective: </strong>This study aimed to investigate the potential of an extract derived from <i>Falcaria vulgaris</i> (FV), loaded with exosomes to form the Exo/FV complex, as a novel therapeutic agent for the management of hypertension in pregnant mice: antioxidants, antimicrobials, and phenolic compounds present in FV lower blood pressure.</p><p><strong>Methods: </strong>The isolation of exosomes was done by ultracentrifugation methods and the FV was loaded into the exosomes by electroporation method.</p><p><strong>Results: </strong>The Exo/FV was found to be spherical with diameter ranges from 20 to 30 nm and they were tested for biocompatibility in NHI 3T3 cell lines and found to be effective. This research investigated <i>in vivo</i> hypertension in mice induced by L-NAME and treated with FV and Exo/FV and found that AChE and MAO determine mice's redox state tends to reduce blood pressure. Increased non-protein thiol (NP-SH) and decreased lipid peroxidation were also found, and PDE-5, ACE, Arginase, and MDA activity has also been tested.</p><p><strong>Conclusion: </strong>This analysis showed that Exo/FV effectively treated hypertension during pregnancy.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"509-521"},"PeriodicalIF":1.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Koichi Kobayashi, Makoto Sakamoto, Tatsuya Soeno, Takashi Sato
{"title":"Accuracy of an image matching technique for assessing knee alignment during the stance phase of gait using single-plane anteroposterior radiography.","authors":"Koichi Kobayashi, Makoto Sakamoto, Tatsuya Soeno, Takashi Sato","doi":"10.3233/BME-240059","DOIUrl":"10.3233/BME-240059","url":null,"abstract":"<p><strong>Background: </strong>Accurate measurement of bone alignment of the knee during walking provides ideal clinical information for diagnosis and treatment of knee joint disorders. To bring this ideal closer to clinical reality, we developed an image matching technique to measure the three-dimensional (3D) position of bones using anteroposterior radiography during the stance phase of treadmill walking.</p><p><strong>Objective: </strong>To develop and validate an image matching method for evaluation of 3D knee alignment using anteroposterior radiography of artificial femoral and tibial bones.</p><p><strong>Methods: </strong>The 3D position of each bone was recovered by minimizing the difference between the projected outline and the contour of the bone in the anteroposterior radiograph. The true value of the position was measured using a 3D coordinate measuring machine.</p><p><strong>Results: </strong>The mean values ± standard deviation and root mean squares (RMS) of translation errors were within -1.6 ± 2.1 mm and 2.6 mm, respectively, for femur, and 2.1 ± 1.9 mm and 2.8 mm for tibia. The mean values ± standard deviation and RMS of errors in rotation were within 0.3 ± 0.7° and 0.7°, respectively, for femur, and -0.3 ± 0.9° and 0.9°, respectively, for tibia.</p><p><strong>Conclusion: </strong>Our method is suitable for evaluating 3D knee alignment on anteroposterior radiography.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"522-529"},"PeriodicalIF":1.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acupuncture navigation method integrated with augmented reality.","authors":"Shin-Yan Chiou, Meng-Ru He","doi":"10.3233/BME-240073","DOIUrl":"10.3233/BME-240073","url":null,"abstract":"<p><strong>Background: </strong>Acupuncture and moxibustion are effective in alleviating symptoms, but the large number of acupoints can make accurate needle placement and training difficult.</p><p><strong>Objective: </strong>To address these challenges, this study aims to develop an augmented reality (AR) acupuncture navigation system designed to improve the accuracy and intuitiveness of acupoint localization.</p><p><strong>Methods: </strong>The proposed system employs a six-point registration and positioning technique, enabling the AR navigation model to adapt to the specific characteristics of each patient.</p><p><strong>Results: </strong>In testing, discrepancies between virtual and actual acupuncture points ranged from 0.6 mm to 3.9 mm, which is within the acceptable tolerance range for acupuncture.</p><p><strong>Conclusion: </strong>This AR-based system shows promise in enhancing the precision of acupuncture point localization, potentially leading to improved treatment outcomes.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"536-547"},"PeriodicalIF":1.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Faisal Yaqoob, Muhammad Khizer Hayat, Muhammad Sharjeel Chaughtai, Sehrish Khan, Musa Bin Bashir
{"title":"Mesenchymal stem cells derived from human adipose tissue exhibit significantly higher chondrogenic differentiation potential compared to those from rats.","authors":"Faisal Yaqoob, Muhammad Khizer Hayat, Muhammad Sharjeel Chaughtai, Sehrish Khan, Musa Bin Bashir","doi":"10.3233/BME-240062","DOIUrl":"https://doi.org/10.3233/BME-240062","url":null,"abstract":"<p><strong>Background: </strong>Osteoarthritis is a prevalent joint disease affecting both humans and animals. It is characterized by articular cartilage degeneration and joint surface eburnation. Currently, no effective pharmacological treatment is available to restore the original function and structure of defective cartilage.</p><p><strong>Objective: </strong>This study explores the potential of stem cell-based therapy in treating joint diseases involving cartilage degeneration, offering a promising avenue for future research and treatment. The primary aim was to compare the characteristics and, more importantly, the chondrogenic differentiation potential of human and rat adipose-derived mesenchymal stem cells (AD-MSCs).</p><p><strong>Methods: </strong>Rat adipose tissue was collected from Sprague Dawley rats, while human adipose tissue was obtained in the form of lipoaspirate. The mesenchymal stem cells (MSCs) were then harvested using collagenase enzyme and subcultured. We meticulously evaluated and compared the cell morphology, percentage of cell viability, population doubling time, metabolic proliferation, and chondrogenic differentiation potential of MSCs harvested from both sources. Chondrogenic differentiation was induced at passage 3 using the 3D pellet culture method and assessed through histological and molecular analysis.</p><p><strong>Results: </strong>The findings revealed that human and rat AD-MSCs were phenotypically identical, and an insignificant difference was found in cell morphology, percentage of cell viability, metabolic proliferation, and population doubling time. However, the chondrogenic differentiation potential of human AD-MSCs was evaluated as significantly higher than that of rat AD-MSCs.</p><p><strong>Conclusion: </strong>The current study suggests that research regarding chondrogenic differentiation of rat AD-MSCs can be effectively translated to humans. This discovery is a significant contribution to the field of regenerative medicine and has the potential to advance our understanding of stem cell-based therapy for joint diseases.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John Z. Wu, Christopher S. Pan, Mahmood Ronaghi, Bryan M. Wimer
{"title":"Testing the shock protection performance of Type I construction helmets using impactors of different masses","authors":"John Z. Wu, Christopher S. Pan, Mahmood Ronaghi, Bryan M. Wimer","doi":"10.3233/bme-230173","DOIUrl":"https://doi.org/10.3233/bme-230173","url":null,"abstract":"BACKGROUND:Wearing protective helmets is an important prevention strategy to reduce work-related traumatic brain injuries. The existing standardized testing systems are used for quality control and do not provide a quantitative measure of the helmet performance. OBJECTIVE:To analyze the failure characterizations of Type I industrial helmets and develop a generalized approach to quantify the shock absorption performance of Type I industrial helmets based on the existing standardized setups. METHODS:A representative basic Type I construction helmet model was selected for the study. Top impact tests were performed on the helmets at different drop heights using two different impactor masses (3.6 and 5.0 kg). RESULTS:When the helmets were impacted with potential impact energies smaller than the critical potential impact energy values, there was a consistent relationship between the peak impact force and the potential impact energy. When the helmets were impacted under potential impact energies greater than the critical potential impact energy values, the peak impact forces increased steeply with increasing potential impact energy. CONCLUSION:A concept of safety margin for construction helmets based on potential impact energy was introduced to quantify the helmets’ shock absorption performance. The proposed method will help helmet manufacturers improve their product quality.","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":"11 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140799333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced treatment of acute organophosphorus pesticide poisoning using activated charcoal-embedded sodium alginate-polyvinyl alcohol hydrogel","authors":"Li Yan, Ying Peng","doi":"10.3233/bme-240007","DOIUrl":"https://doi.org/10.3233/bme-240007","url":null,"abstract":"BACKGROUND:The adsorption of activated charcoal is currently a major clinical treatment for acute organophosphorus pesticide poisoning (AOPP). However, the adsorption duration and efficiency of this method is unstable. OBJECTIVE:In this study, a hydrogel embedding activated charcoal was prepared and its alleviating effects on AOPP were investigated. METHODS:A composite hydrogel using sodium alginate and polyvinyl alcohol (SA-PVA) hydrogel was prepared in this study. The structural properties of the SA-PVA hydrogel were characterized via multiple analysis including FTIR, TGA, XRD, SEM, tensile strength and expansion rate. Based on these, activated charcoal (AC) was embedded within the SA-PVA hydrogel (SA-PVA-AC) and it was used for the treatment of AOPP. RESULTS:Structural characterization indicated SA-PVA hydrogel possesses excellent mechanical properties and biocompatibility. The in vivo study demonstrated that SA-PVA-AC significantly alleviated the inflammation and oxidative damage in the liver, as evidenced by reduced levels of IL-6, TNF-α, and, IL-1β, SOD, and MDA. Furthermore, SA-PVA-AC treatment effectively re-regulated the activities of serum AST and ALT, exhibiting an improved effect on liver function. CONCLUSION:The findings suggest that activated charcoal embedded within SA-PVA hydrogel has significant potential as a therapeutic agent in treating AOPP, and offering a novel approach to managing pesticide-induced toxicity.","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":"5 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140589165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Blaire V. Slavin, Nicholas A. Mirsky, Zachary M. Stauber, Vasudev Vivekanand Nayak, James E. Smay, Cristobal F. Rivera, Dindo Q. Mijares, Paulo G. Coelho, Bruce N. Cronstein, Nick Tovar, Lukasz Witek
{"title":"3D printed β-tricalcium phosphate versus synthetic bone mineral scaffolds: A comparative in vitro study of biocompatibility","authors":"Blaire V. Slavin, Nicholas A. Mirsky, Zachary M. Stauber, Vasudev Vivekanand Nayak, James E. Smay, Cristobal F. Rivera, Dindo Q. Mijares, Paulo G. Coelho, Bruce N. Cronstein, Nick Tovar, Lukasz Witek","doi":"10.3233/bme-230214","DOIUrl":"https://doi.org/10.3233/bme-230214","url":null,"abstract":"BACKGROUND:β-tricalcium phosphate (β-TCP) has been successfully utilized as a 3D printed ceramic scaffold in the repair of non-healing bone defects; however, it requires the addition of growth factors to augment its regenerative capacity. Synthetic bone mineral (SBM) is a novel and extrudable carbonate hydroxyapatite with ionic substitutions known to facilitate bone healing. However, its efficacy as a 3D printed scaffold for hard tissue defect repair has not been explored. OBJECTIVE:To evaluate the biocompatibility and cell viability of human osteoprecursor (hOP) cells seeded on 3D printed SBM scaffolds via in vitro analysis. METHODS:SBM and β-TCP scaffolds were fabricated via 3D printing and sintered at various temperatures. Scaffolds were then subject to qualitative cytotoxicity testing and cell proliferation experiments utilizing (hOP) cells. RESULTS:SBM scaffolds sintered at lower temperatures (600 °C and 700 °C) induced greater levels of acute cellular stress. At higher sintering temperatures (1100 °C), SBM scaffolds showed inferior cellular viability relative to β-TCP scaffolds sintered to the same temperature (1100 °C). However, qualitative analysis suggested that β-TCP presented no evidence of morphological change, while SBM 1100 °C showed few instances of acute cellular stress. CONCLUSION:Results demonstrate SBM may be a promising alternative to β-TCP for potential applications in bone tissue engineering.","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":"22 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140589096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}