{"title":"Targeted nanocarriers effectively remove cholesterol from macrophages.","authors":"Jin Chen, Qing Miao, Xinrong Xiao","doi":"10.1177/09592989251375811","DOIUrl":"https://doi.org/10.1177/09592989251375811","url":null,"abstract":"<p><p>BackgroundMacrophages phagocytose large amounts of cholesterol to form foam cells that can aggravate inflammation and further promote the development of atherosclerotic plaque.ObjectiveTo develop novel nanocarriers targeting atherosclerosis-associated macrophages.MethodsCD-G5 was obtained by modifying β-CD onto PAMAM G5.0, and subsequently PEG2000 was used as a linker arm to modify mannose onto PAMAM G5.0 of CD-G5 to obtain CD-G5-PEG-Man. CD-G5-PEG-Man was structurally characterized and evaluated in vitro for its cell biological functions.ResultsCD-G5-PEG-Man had an average particle size of 110 nm and a regular spherical morphology. CD-G5-PEG-Man showed no significant toxicity to macrophages at all the experimental concentration gradients. Macrophages showed stronger uptake of the fluorescently labelled nanoparticle CD-G5-PEG-Man-FITC than CD-G5-FITC, and the fluorescence weakened with increasing free mannose. Intracellular BODIY-cholesterol fluorescence intensity was weaker in the 200 nM CD-G5-PEG-Man treatment group than in the 100 µM HP-β-CD, 100 nM CD-G5-PEG-Man, and DMSO treatment groups. The higher the amount of β-CD on the CD-G5-PEG-Man, the lower the fluorescence intensity of intracellular BODIY-cholesterol.ConclusionA biosafety nanocarrier, CD-G5-PEG-Man, was successfully developed, in which mannose specifically targets macrophages via mannose receptors on macrophages, and β-CD synergistically promotes cholesterol efflux from macrophages.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251375811"},"PeriodicalIF":1.3,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145051848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adoption of enhanced multislice spiral computed tomography combined with magnetic resonance imaging in staging and preoperative assessment of colon cancer patients.","authors":"Cong Liang, Ying Wu, Limei Wang, Junfang Bai, Dan Wang, Fei Zhao","doi":"10.1177/09592989251335125","DOIUrl":"10.1177/09592989251335125","url":null,"abstract":"<p><p>BackgroundColon cancer (CC) refers to malignant tumor of the digestive tract worldwide and is also among the cancers with high mortality rates.ObjectiveThe aim of this work was to evaluate the diagnostic performance of multislice spiral CT (MSCT), magnetic resonance imaging (MRI), and MSCT + MRI in different stages of colon cancer (CC) (T1-T2, T3, T4). This work compared the differences in sensitivity (<i>Sen</i>), specificity (<i>Spe</i>), accuracy (Acc), and area under the curve (AUC) values among these methods and explored the optimal diagnostic strategy.MethodsA total of 120 patients with CC confirmed by pathological biopsy and 30 individuals suspected of CC but without detected tumors (as controls) were selected. All subjects underwent MSCT, MRI, and combined MSCT + MRI examinations. Statistical analyses of <i>Sen</i>, <i>Spe</i>, <i>Acc</i>, and AUC values were performed.ResultsIn the T1-T2 stage, MSCT had a <i>Sen</i> of 85.2%, <i>Acc</i> of 86.8%, and an AUC value of 0.878; MRI had a <i>Spe</i> of 91.0%, <i>Sen</i> of 81.6%, and an AUC value of 0.865; the combined MSCT + MRI examination had a <i>Sen</i> of 90.6% and an AUC of 0.903. In the T3 stage, MRI had a significantly higher <i>Sen</i> (91.7%) than MSCT (80.0%), with an AUC of 0.887, while the combined MSCT + MRI examination had a <i>Sen</i> of 98.3% and an AUC of 0.942. In the T4 stage, the combined MSCT + MRI examination performed the best, with a <i>Sen</i> of 100% and an AUC of 0.933, and compared with MSCT or MRI alone, the differences were statistically significant (<i>P </i>< 0.05).ConclusionMSCT and MRI each have their own advantages in the diagnosis of different stages of CC. MSCT is suitable for initial screening in the T1-T2 stage, while MRI is more effective in assessing tumor invasiveness in the T3 and higher stages. The combined MSCT + MRI examination can provide more comprehensive diagnostic information, especially in the T4 stage, where it shows the highest <i>Sen</i> and <i>Acc</i>. Selecting the appropriate examination method based on the patient's specific condition and staging needs is of great significance in improving the diagnostic <i>Acc</i> of CC.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"279-286"},"PeriodicalIF":1.3,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143965398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Claudia G Ramírez-Mendoza, Lorena Armenta-Villegas, Jesús M Quiroz-Castillo, Angel U Orozco-Valencia, Dora E Rodríguez-Félix, Rafael Ramírez-Bon, David A Fernández-Benavides, José R Flores-León, Guillermo Suarez-Campos, Ana D Cabrera-González, Damian F Plascencia-Martínez, María M Castillo-Ortega
{"title":"Application of electrospun membranes of polylactic acid and polypyrrole as a biosensor for the detection of cholesterol.","authors":"Claudia G Ramírez-Mendoza, Lorena Armenta-Villegas, Jesús M Quiroz-Castillo, Angel U Orozco-Valencia, Dora E Rodríguez-Félix, Rafael Ramírez-Bon, David A Fernández-Benavides, José R Flores-León, Guillermo Suarez-Campos, Ana D Cabrera-González, Damian F Plascencia-Martínez, María M Castillo-Ortega","doi":"10.1177/09592989251341131","DOIUrl":"10.1177/09592989251341131","url":null,"abstract":"<p><p><b>Background:</b> Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) plays a crucial role in various industries and enzymatic reactions, including cholesterol oxidation. Cholesterol, vital for physiological functions, can lead to cardiovascular and hepatic diseases when present in excess. Accurate detection is crucial, yet current techniques are costly and time-consuming. Biosensors offer a promising alternative due to their sensitivity, speed, and portability in detecting H<sub>2</sub>O<sub>2</sub>. <b>Objective:</b> This study aims to develop a sensitive, simple, rapid, and cost-effective biosensor for H<sub>2</sub>O<sub>2</sub> detection using electrospun membranes coated with polypyrrole (PPy). <b>Methods:</b> Poly(lactic acid) (PLA) membranes were prepared using the electrospinning technique. Subsequently, these membranes were coated with polypyrrole (PPy) through in situ chemical polymerization. The obtained materials were characterized using SEM, contact angle measurements, XPS, and their electrical properties were analyzed. <b>Results</b>: PLA/PPy composite membranes exhibited electrical conductivities on the order of 10<sup>-2</sup> S cm<sup>-1</sup>. Upon exposure to H<sub>2</sub>O<sub>2</sub> and enzymatic reaction, a significant decrease in their electrical properties was observed, indicating their potential as sensors for detecting this analyte. <b>Conclusions:</b> Electrospun PLA/PPy membranes demonstrate high potential for H<sub>2</sub>O<sub>2</sub> detection, owing to their large surface area and high reactivity, thereby enhancing sensor sensitivity. These characteristics make this material a promising option for H<sub>2</sub>O<sub>2</sub> detection applications across various industries.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"301-315"},"PeriodicalIF":1.3,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144075981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"One-pot method to prepare the guar gum hydrogel dressing and its application in wound repair.","authors":"Xuepeng Guo, Mingming Yin, Zhangqiang Tuo","doi":"10.1177/09592989251326661","DOIUrl":"10.1177/09592989251326661","url":null,"abstract":"<p><p>BackgroundThe skin serves as a critical barrier, safeguarding the body against external threats including bacteria, viruses, and ultraviolet (UV) radiation. Compromised skin integrity can result in pain, hinder daily activities, and elevate the risk of infections. Clinically, dressings are the conventional treatment for skin injuries. However, these often necessitate frequent replacements and may exacerbate wound trauma during removal. Therefore, there is growing interest in developing innovative dressings such as hydrogels, which are celebrated for their softness, adaptability, permeability, and capacity to sustain a moist wound environment. Guar gum, a galactomannan polysaccharide extensively utilized in the food and biomedical sectors, forms highly viscous, biocompatible hydrogels that are promising for medical applications including capsules and wound dressings. Nonetheless, the mechanical strength and antimicrobial properties of guar gum hydrogels require enhancements for optimal medical efficacy.ObjectiveThis study explores the fortification of guar gum (GG) hydrogels with tannic acid (TA) and citric acid (CA), which are known for their antibacterial, anti-inflammatory, and antioxidant properties, to develop injectable, antimicrobial hydrogel dressings.MethodsEmploying a one-pot synthesis method, this research aimed to create dressings for treating skin injuries in murine models. The hydrogels were characterized using Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR), assessed for antibacterial efficacy against <i>Staphylococcus aureus</i>, and evaluated for biocompatibility and therapeutic effectiveness in mice with full-thickness skin injuries.ResultsThe results demonstrated successful cross-linking, structural stability, and significant enhancement in wound healing, indicating the potential of these GG-CA-TA hydrogel dressings to broaden the scope of guar gum applications in clinical skin restoration.ConclusionIn this study, a kind of Guar gum hydrogel was successfully synthesized by one-pot method, which has great potential in clinical skin repair.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"269-278"},"PeriodicalIF":1.3,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143973360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The influence of artificial tooth root materials on temperature distribution in peri-implantitis for photothermal therapy.","authors":"Donghyuk Kim, Hyunjung Kim, Hee-Sun Kim","doi":"10.1177/09592989251346472","DOIUrl":"10.1177/09592989251346472","url":null,"abstract":"<p><p>BackgroundA representative method for compensating for tooth loss is implant placement. Dental implants consist of a crown, an abutment, and an artificial tooth root, and are made of various materials. Proper care is essential for the long-term use of implants, and negligence in care can lead to inflammation around the implant. The most representative inflammation that occurs around implants is peri-implantitis, and various laser treatments are being studied recently to eliminate it.ObjectiveIn this study, the effect of implant materials on temperature rise within inflamed tissue was analyzed both theoretically and numerically in removal of peri-implantitis using photothermal therapy.MethodsThe temperature distribution in tissue for various artificial root materials, laser irradiation angles, and intensities was calculated, and degree of tissue death was determined using the Arrhenius damage integral. Furthermore, percentage of tissue death was analyzed using the Arrhenius thermal damage ratio and the normal tissue Arrhenius thermal damage ratio to identify trends in the results based on treatment conditions.ResultsConsequently, with regard to materials used for artificial tooth roots, the prevailing trend in treatment indicates that zirconia is the most effective material, followed by Ti-6Al-4V, titanium, and tantalum. The efficacy of laser irradiation increases as the angle approaches vertical.ConclusionThe findings indicate that increasing laser power and reducing the irradiation angle are beneficial when focusing solely on inflammation.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"324-332"},"PeriodicalIF":1.3,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144315884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jada Stutts, Kayla Clatterbuck, Chloe Duckworth, Tyera Pemberton, Aillea Elkins, Prabir Patra, William Stoecker, Navin Geria, Nasim Nosoudi
{"title":"Synergistic impact of antioxidant combinations on collagen and elastin synthesis in human dermal fibroblasts.","authors":"Jada Stutts, Kayla Clatterbuck, Chloe Duckworth, Tyera Pemberton, Aillea Elkins, Prabir Patra, William Stoecker, Navin Geria, Nasim Nosoudi","doi":"10.1177/09592989251341159","DOIUrl":"10.1177/09592989251341159","url":null,"abstract":"<p><p><b>Background:</b> The restoration of collagen and elastin in human dermal fibroblasts plays a crucial role in anti-aging and skin rejuvenation therapies. Numerous studies have examined the effects of various antioxidants on skin health, but there is limited research comparing their combined effects on collagen and elastin synthesis in human dermal fibroblasts. <b>Objective:</b> The objective of this study was to evaluate the individual and combined effects of N-acetylcysteine (NAC), Coenzyme Q10 (CoQ10), Niacinamide (NIAC), Gamma Cyclodextrin (GAMMA), Retinol (RET), Epigallocatechin Gallate (EGCG), and Ellagic Acid (ELA) on collagen type I and elastin synthesis in human dermal fibroblasts (HDFs). <b>Methods:</b> Human dermal fibroblasts were treated with individual and combined antioxidants. The expression of collagen type I and elastin was measured using mRNA analysis, immunofluorescence staining, and matrix protein assays. The study focused on the effects of EGCG in combination with other antioxidants like RET, CoQ10, and NAC to identify synergistic effects. <b>Results:</b> The combination of EGCG + RET and EGCG + CoQ10 showed the most significant increase in both elastin and collagen type I synthesis, surpassing the effects of individual antioxidants. EGCG demonstrated the highest fold change in elastin mRNA expression, while the combination treatments notably enhanced the extracellular matrix restoration in HDFs. <b>Conclusion:</b> The combination of EGCG with CoQ10, Retinol, or NAC presents a promising strategy for enhancing skin elasticity and firmness by promoting both elastin and collagen synthesis. These findings suggest that antioxidant combinations can be developed for effective anti-aging skincare formulations.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"316-323"},"PeriodicalIF":1.3,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143965401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohd Faruq Abdul Latif, Nik Nazri Nik Ghazali, M F Abdullah, Norliza Binti Ibrahim, Roziana Mohd Razi, Tmys Tuan Ya, Irfan Anjum Badruddin, Sarfaraz Kamangar, Asa Zedan, Abdul Azeem Khan
{"title":"Upper airways modelling and validation of mandibular advancement surgery.","authors":"Mohd Faruq Abdul Latif, Nik Nazri Nik Ghazali, M F Abdullah, Norliza Binti Ibrahim, Roziana Mohd Razi, Tmys Tuan Ya, Irfan Anjum Badruddin, Sarfaraz Kamangar, Asa Zedan, Abdul Azeem Khan","doi":"10.1177/09592989251341127","DOIUrl":"10.1177/09592989251341127","url":null,"abstract":"<p><p><b>Background:</b> Most Obstructive Sleep Apnoea (OSA) treatments use cross-sectional examination of the Upper Airways (UA) to determine decreasing gap and UA length. Surgery is detrimental to all OSA patients, stressing the need for better assessment. <b>Objective:</b> This study integrates Computational Fluid Dynamics (CFD) with physical model validation to improve OSA prediction and turbulence model accuracy and dependability. <b>Methods:</b> The k-omega SST turbulence model is used to analyse OSA using CFD. SLS is used to build a physical model of the UA for CFD simulations. The UA's physical model is then compared to the OSA-recommended CFD turbulence model to verify simulation-physical reality coherence. <b>Result:</b> The average UA pressure differential decreases considerably after mandibular advancement surgery. The Turbulent Kinetic Energy (TKE) increases after surgery, indicating more turbulence. Cross-validation of the physical model confirms the OSA CFD turbulence simulation's validity. <b>Conclusion:</b> The study concludes that matching UA simulations with physical models improves OSA assessments. CFD with established physical models is a reliable method for assessing OSA therapy, especially surgical operations. The post-surgery increase in TKE needs more study to determine its effects on OSA treatment outcomes.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"287-300"},"PeriodicalIF":1.3,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144282374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lumefantrine co-amorphous systems using deoxycholic acid as a co-former: NIR at-line process monitoring by machine learning.","authors":"Yuta Otsuka, Kiyotada Naitou, Takeshi Miyata","doi":"10.1177/09592989251353457","DOIUrl":"https://doi.org/10.1177/09592989251353457","url":null,"abstract":"<p><p>BackgroundVarious methods have been reported for improving the water-insoluble drugs in oral administration formulations. Among them, amorphization has been attracting attention and developed as a method for solubilizing API (active pharmaceutical ingredient)s by changing their physicochemical properties. Molecular complexation is also known as a method for solubilizing APIs by synthesizing cocrystals, etc. Co-amorphization, which achieves both molecular complexation and amorphization, is effective and has attracted attention. Thus, co-amorphization has been proven to be an effective approach to solubilization.ObjectiveThis study aims to improve the solubility of lumefantrine, used here as a model compound, through co-amorphization with deoxycholic acid.SignificanceThe physicochemical properties are an important factor in developing pharmaceutical ingredients. Hydrogen-bonded co-amorphization has gained attention as a method to enhance the physicochemical properties of hydrophobic drugs.MethodsThe co-amorphous Lumefantrine-deoxycholic acid system was prepared using a mechanochemical synthesis method based on ball milling. The synthesis process was monitored by powder X-ray diffraction and near-infrared spectroscopy. The products and materials were analyzed by thermal analysis.ResultsSpectroscopic analysis revealed that the two molecules were complexed through intermolecular hydrogen bonding interactions. The produced co-amorphous has no melting point was found by thermal analysis.ConclusionsProcess monitoring also indicated the presence of a metastable crystalline Lumefantrine (LMF) intermediate.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251353457"},"PeriodicalIF":1.3,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144783494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The mechanical properties of bone filling materials affect the therapeutic effect of vertebroplasty: Biomechanical finite element analysis.","authors":"Xiangjing Zeng, Cheng Long, Yuting Yi, Shaoru Lin","doi":"10.1177/09592989251353447","DOIUrl":"https://doi.org/10.1177/09592989251353447","url":null,"abstract":"<p><p>BackgroundBone filling materials that match the mechanical properties of normal cancellous bone may be more suitable for vertebroplasty to improve the complications caused by osteoporosis.ObjectiveTo prepare and evaluate a new bone filling material (NBFM) that matches the mechanical properties of normal cancellous bone for vertebroplasty.MethodsA new bone filling material (NBFM) was prepared and its biomechanical properties were compared with those of polymethyl methacrylate (PMMA) bone filling material commonly used in clinical vertebroplasty. Finite element analysis was conducted to compare the biomechanical differences between NBFM and PMMA. The lumbar spine model's biomechanical differences were assessed under four different loading conditions: flexion, extension, left flexion, and right flexion.ResultsThe NBFM demonstrated biomechanical properties more closely matching normal cancellous bone compared to PMMA. The finite element analysis revealed that the lumbar spine model with NBFM exhibited improved biomechanical behavior under the specified loading conditions.Conclusion:Bone filling materials that match the mechanical properties of normal cancellous bone, such as the newly developed NBFM, are more suitable for vertebroplasty and may help reduce complications associated with osteoporosis.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251353447"},"PeriodicalIF":1.3,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144727940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of coamorphization on meloxicam/saccharine: Intermolecular interaction investigations using chemometrics.","authors":"Yuta Otsuka","doi":"10.1177/09592989251341175","DOIUrl":"https://doi.org/10.1177/09592989251341175","url":null,"abstract":"<p><p><b>Background:</b> Aqueous solubility of pharmaceuticals is a factor as it is directly associated with bioavailability; accordingly, strategies to enhance solubility have been well investigated. <b>Objectives:</b> The purpose of this study was to determine the effects of coamorphization on meloxicam (MX) and saccharine (SA) mixtures. <b>Methods:</b> An equimolar mixture of MX and SA was ground for 4 h at 300 rpm. The obtained samples were evaluated using Fourier-transform mid-infrared spectroscopy, Fourier transform near-infrared spectroscopy, powder X-ray diffraction (PXRD), and thermal analysis. No molecular interactions were observed in the physical mixture sample. The ground samples showed broad peaks in the PXRD patterns and an exothermic peak at an early temperature. <b>Results:</b> The results suggested that the grinding process transformed MX and SA into a coamorphous phase. The attenuated total reflection - IR spectra exhibited new peaks at 1719 cm<sup>-1</sup> and 1398 cm<sup>-1</sup>, and the NH peak disappeared with grinding time. Measurement data of MX and SA ground sample suggested they constructed coamorphous phase. <b>Conclusion:</b> It was indicated by multivariate analysis that the formation of the MX/SA coamorphous system occurred in a two-step process.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251341175"},"PeriodicalIF":1.0,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144682014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}