{"title":"The influence of artificial tooth root materials on temperature distribution in peri-implantitis for photothermal therapy.","authors":"Donghyuk Kim, Hyunjung Kim, Hee-Sun Kim","doi":"10.1177/09592989251346472","DOIUrl":"https://doi.org/10.1177/09592989251346472","url":null,"abstract":"<p><p>BackgroundA representative method for compensating for tooth loss is implant placement. Dental implants consist of a crown, an abutment, and an artificial tooth root, and are made of various materials. Proper care is essential for the long-term use of implants, and negligence in care can lead to inflammation around the implant. The most representative inflammation that occurs around implants is peri-implantitis, and various laser treatments are being studied recently to eliminate it.ObjectiveIn this study, the effect of implant materials on temperature rise within inflamed tissue was analyzed both theoretically and numerically in removal of peri-implantitis using photothermal therapy.MethodsThe temperature distribution in tissue for various artificial root materials, laser irradiation angles, and intensities was calculated, and degree of tissue death was determined using the Arrhenius damage integral. Furthermore, percentage of tissue death was analyzed using the Arrhenius thermal damage ratio and the normal tissue Arrhenius thermal damage ratio to identify trends in the results based on treatment conditions.ResultsConsequently, with regard to materials used for artificial tooth roots, the prevailing trend in treatment indicates that zirconia is the most effective material, followed by Ti-6Al-4V, titanium, and tantalum. The efficacy of laser irradiation increases as the angle approaches vertical.ConclusionThe findings indicate that increasing laser power and reducing the irradiation angle are beneficial when focusing solely on inflammation.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251346472"},"PeriodicalIF":1.0,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144315884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retraction: Mesenchymal Stem Cells Derived from Human Adipose Tissue Exhibit Significantly Higher Chondrogenic Differentiation Potential Compared to Those from Rats'.","authors":"","doi":"10.1177/09592989251347678","DOIUrl":"https://doi.org/10.1177/09592989251347678","url":null,"abstract":"","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251347678"},"PeriodicalIF":1.0,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144282373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel fem framework for correlative study of mechanical properties of normal and osteoporotic human bone.","authors":"Sanvi Pranav Bhise, Raviraj H Havaldar","doi":"10.1177/09592989251346476","DOIUrl":"https://doi.org/10.1177/09592989251346476","url":null,"abstract":"<p><p>BackgroundOsteoporosis is a prevalent bone disease which results in increased bone porosity and decreased bone density, which in turn raises the risk of fractures. A conflict between bone formation (the process of creating new bone tissue) and bone resorption (the degradation and removal of old bone tissue) causes the disorder. This imbalance causes the process of bone remodelling to be disrupted, which weakens the bone structures.ObjectiveDue to intrinsic anatomical differences, previous research on the prediction of bone failure has been imprecise. It requires improvement for load scenarios and validation for various demographics, ultimately leading to low accuracy.MethodsTo overcome these limitations, this study proposes a novel Finite Element analysis framework for predicting osteoporosis with the mechanical properties of human bone for stress, strain estimation.ResultsAs a result of this proposed framework proves its significance with stress in healthy bones is 2.557541680090727e-04 and bones with osteoporosis is 1.814480251460656e-03, young's modulus of healthy bones and unhealthy bones are 7.019135266051970e + 10 and 0.6158529354739577e + 10, the von Mises stress for healthy bone is 2.4897e + 07, and for the unhealthy bone is 2.8638e + 07, finally, the maximum deflection in healthy bone is 1.0235e-03, for unhealthy bone is 2.1182e-03.ConclusionThus the proposed model provides significant results in the presence or absence of osteoporosis disease.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251346476"},"PeriodicalIF":1.0,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144282372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohd Faruq Abdul Latif, Nik Nazri Nik Ghazali, M F Abdullah, Norliza Binti Ibrahim, Roziana Mohd Razi, Tmys Tuan Ya, Irfan Anjum Badruddin, Sarfaraz Kamangar, Asa Zedan, Abdul Azeem Khan
{"title":"Upper airways modelling and validation of mandibular advancement surgery.","authors":"Mohd Faruq Abdul Latif, Nik Nazri Nik Ghazali, M F Abdullah, Norliza Binti Ibrahim, Roziana Mohd Razi, Tmys Tuan Ya, Irfan Anjum Badruddin, Sarfaraz Kamangar, Asa Zedan, Abdul Azeem Khan","doi":"10.1177/09592989251341127","DOIUrl":"https://doi.org/10.1177/09592989251341127","url":null,"abstract":"<p><strong>Background: </strong>Most Obstructive Sleep Apnoea (OSA) treatments use cross-sectional examination of the Upper Airways (UA) to determine decreasing gap and UA length. Surgery is detrimental to all OSA patients, stressing the need for better assessment.ObjectiveThis study integrates Computational Fluid Dynamics (CFD) with physical model validation to improve OSA prediction and turbulence model accuracy and dependability.MethodsThe k-omega SST turbulence model is used to analyse OSA using CFD. SLS is used to build a physical model of the UA for CFD simulations. The UA's physical model is then compared to the OSA-recommended CFD turbulence model to verify simulation-physical reality coherence.ResultThe average UA pressure differential decreases considerably after mandibular advancement surgery. The Turbulent Kinetic Energy (TKE) increases after surgery, indicating more turbulence. Cross-validation of the physical model confirms the OSA CFD turbulence simulation's validity.ConclusionThe study concludes that matching UA simulations with physical models improves OSA assessments. CFD with established physical models is a reliable method for assessing OSA therapy, especially surgical operations. The post-surgery increase in TKE needs more study to determine its effects on OSA treatment outcomes.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251341127"},"PeriodicalIF":1.0,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144282374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pablo Yael Carrazco Ávila, Juan Ignacio Rosales Leal, Miguel Ángel Rodríguez Valverde, María Encarnación Morales Hernandez
{"title":"Design strategies for titanium surfaces to adsorb and release drugs: An in vitro study.","authors":"Pablo Yael Carrazco Ávila, Juan Ignacio Rosales Leal, Miguel Ángel Rodríguez Valverde, María Encarnación Morales Hernandez","doi":"10.1177/09592989251346461","DOIUrl":"https://doi.org/10.1177/09592989251346461","url":null,"abstract":"<p><strong>Background: </strong>During the early postoperative period, it is important that the patient recovers without pain and inflammation, while preserving their quality of life. In this sense, coated titanium surfaces have been designed to release anti-inflammatory and analgesic drugs during the first postoperative hours.</p><p><strong>Objective: </strong>Evaluate the adsorption capacity and release profile of different bioactive titanium surfaces treated with three different drugs: acetaminophen, doxepin and ibuprofen.</p><p><strong>Methods: </strong>Four bioactive surfaces (polished, oxidized, hydroxyapatite precipitate, and polyvinyl alcohol coating surfaces) were physiochemically treated and analyzed.</p><p><strong>Results: </strong>Hydroxyapatite coatings were the roughest, while PVA coating was the softest. Acetaminophen was the only drug detected on all the surfaces. In contrast, higher drug doses were loaded into the PVA coatings, showing a satisfactory release profile.</p><p><strong>Conclusion: </strong>The results suggest that a rougher or ionically charged surface does not guarantee drug adsorption. In contrast, the use of a transport vehicle such as a polyvinyl coating ensures the release of the drug, initiating its therapeutic effect within the first minutes, and maintained for a period of between 120 and 180 min.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251346461"},"PeriodicalIF":1.0,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144257321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"BMP-2 enhanced new bone formation of calcium phosphate-based composites in mice.","authors":"Liuxing He, Xue Wang, Nana Xiong, Zhihong Dong, Lijia Cheng","doi":"10.1177/09592989251346468","DOIUrl":"https://doi.org/10.1177/09592989251346468","url":null,"abstract":"<p><strong>Background: </strong>Autologous bone grafting, particularly using iliac crest bone grafts, historically been considered the gold standard for bone grafting. However, its limited availability and secondary surgical trauma associated with the procedure have restricted its widespread application.</p><p><strong>Objective: </strong>To investigate the osteogenic potential of calcium phosphate-based composites with or without the addition of bone morphogenetic protein-2 (BMP-2).</p><p><strong>Methods: </strong>The BMP-2/calcium phosphate (CaP)/temperature-sensitive hydrogel (BCT) composite was synthesized, while the CaP/temperature-sensitive hydrogel (CT) composite was prepared as control group. The surface morphology of the composites was observed using scanning electron microscope (SEM). Subsequently, the composites were co-cultured with mouse bone marrow mesenchymal stem cells (BMSCs), and the cell proliferation, alkaline phosphatase (ALP) activity and extracellular matrix (ECM) mineralization were assessed. The composites were injected into the muscle of mice, and the samples underwent hematoxylin and eosin (HE), Masson-trichrome, and safranin and fast green staining. Immunohistochemistry for BMP-2 and type I collagen (ColI) was performed at weeks 8 and 12.</p><p><strong>Results: </strong>There was no significant difference in cell proliferation between the BCT and CT groups. However, the relative ALP activity and ECM mineralization were significantly higher in BCT group compared to the CT group (<i>P</i> < 0.05). BMP-2 accelerated the osteoinduction process and promoted the formation of more new bone tissue and bone marrow in group BCT. The number of osteocytes and the collagen area ratio were significantly higher in group BCT than that in group CT (<i>P</i> < 0.05).</p><p><strong>Conclusion: </strong>BMP-2 and CaP synergistically accelerated the initiation of osteoinduction, and promoted increased bone formation. The temperature-sensitive hydrogel made the material injectable, expanding its range of applications. The BCT composite shows promise as an artificial bone material.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251346468"},"PeriodicalIF":1.0,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144207689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrically stimulated drug release using conductive GelMA/k-carrageenan/rGO blended hydrogel for enhanced biomedical applications.","authors":"Jong Min Lee","doi":"10.1177/09592989251343077","DOIUrl":"https://doi.org/10.1177/09592989251343077","url":null,"abstract":"<p><p>BackgroundHydrogels are hydrophilic polymers with high water content and a porous structure, making them suitable for incorporating water-soluble drugs and functioning as drug delivery systems. Their structural similarity to living tissues renders them valuable for applications in tissue engineering, pharmaceuticals, and medical treatments.ObjectiveThis study aimed to develop a blended hydrogel with improved mechanical strength and biocompatibility, and to enhance its drug release capabilities through electrical stimulation.MethodA conductive hydrogel was synthesized by blending gelatin methacrylate (GelMA), kappa carrageenan (k-carrageenan), and reduced graphene oxide (rGO). The hydrogel's physical integrity, biocompatibility, and drug release performance under electrical stimulation were evaluated.ResultsThe GelMA/k-carrageenan/rGO hydrogel retained its structural stability, demonstrated excellent biocompatibility, and effectively released drugs in response to electrical stimulation.ConclusionThe developed conductive hydrogel presents strong potential for advanced drug delivery systems utilizing electrical stimulation, with promising implications across biomedical and pharmaceutical fields.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251343077"},"PeriodicalIF":1.0,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144075984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Claudia G Ramírez-Mendoza, Lorena Armenta-Villegas, Jesús M Quiroz-Castillo, Angel U Orozco-Valencia, Dora E Rodríguez-Félix, Rafael Ramírez-Bon, David A Fernández-Benavides, José R Flores-León, Guillermo Suarez-Campos, Ana D Cabrera-González, Damian F Plascencia-Martínez, María M Castillo-Ortega
{"title":"Application of electrospun membranes of polylactic acid and polypyrrole as a biosensor for the detection of cholesterol.","authors":"Claudia G Ramírez-Mendoza, Lorena Armenta-Villegas, Jesús M Quiroz-Castillo, Angel U Orozco-Valencia, Dora E Rodríguez-Félix, Rafael Ramírez-Bon, David A Fernández-Benavides, José R Flores-León, Guillermo Suarez-Campos, Ana D Cabrera-González, Damian F Plascencia-Martínez, María M Castillo-Ortega","doi":"10.1177/09592989251341131","DOIUrl":"https://doi.org/10.1177/09592989251341131","url":null,"abstract":"<p><strong>Background: </strong>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) plays a crucial role in various industries and enzymatic reactions, including cholesterol oxidation. Cholesterol, vital for physiological functions, can lead to cardiovascular and hepatic diseases when present in excess. Accurate detection is crucial, yet current techniques are costly and time-consuming. Biosensors offer a promising alternative due to their sensitivity, speed, and portability in detecting H<sub>2</sub>O<sub>2</sub>. <b>Objective:</b> This study aims to develop a sensitive, simple, rapid, and cost-effective biosensor for H<sub>2</sub>O<sub>2</sub> detection using electrospun membranes coated with polypyrrole (PPy). <b>Methods:</b> Poly(lactic acid) (PLA) membranes were prepared using the electrospinning technique. Subsequently, these membranes were coated with polypyrrole (PPy) through in situ chemical polymerization. The obtained materials were characterized using SEM, contact angle measurements, XPS, and their electrical properties were analyzed. <b>Results</b>: PLA/PPy composite membranes exhibited electrical conductivities on the order of 10<sup>-2</sup> S cm<sup>-1</sup>. Upon exposure to H<sub>2</sub>O<sub>2</sub> and enzymatic reaction, a significant decrease in their electrical properties was observed, indicating their potential as sensors for detecting this analyte. <b>Conclusions:</b> Electrospun PLA/PPy membranes demonstrate high potential for H<sub>2</sub>O<sub>2</sub> detection, owing to their large surface area and high reactivity, thereby enhancing sensor sensitivity. These characteristics make this material a promising option for H<sub>2</sub>O<sub>2</sub> detection applications across various industries.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251341131"},"PeriodicalIF":1.0,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144075981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jada Stutts, Kayla Clatterbuck, Chloe Duckworth, Tyera Pemberton, Aillea Elkins, Prabir Patra, William Stoecker, Navin Geria, Nasim Nosoudi
{"title":"Synergistic impact of antioxidant combinations on collagen and elastin synthesis in human dermal fibroblasts.","authors":"Jada Stutts, Kayla Clatterbuck, Chloe Duckworth, Tyera Pemberton, Aillea Elkins, Prabir Patra, William Stoecker, Navin Geria, Nasim Nosoudi","doi":"10.1177/09592989251341159","DOIUrl":"https://doi.org/10.1177/09592989251341159","url":null,"abstract":"<p><strong>Background: </strong>The restoration of collagen and elastin in human dermal fibroblasts plays a crucial role in anti-aging and skin rejuvenation therapies. Numerous studies have examined the effects of various antioxidants on skin health, but there is limited research comparing their combined effects on collagen and elastin synthesis in human dermal fibroblasts. <b>Objective:</b> The objective of this study was to evaluate the individual and combined effects of N-acetylcysteine (NAC), Coenzyme Q10 (CoQ10), Niacinamide (NIAC), Gamma Cyclodextrin (GAMMA), Retinol (RET), Epigallocatechin Gallate (EGCG), and Ellagic Acid (ELA) on collagen type I and elastin synthesis in human dermal fibroblasts (HDFs). <b>Methods:</b> Human dermal fibroblasts were treated with individual and combined antioxidants. The expression of collagen type I and elastin was measured using mRNA analysis, immunofluorescence staining, and matrix protein assays. The study focused on the effects of EGCG in combination with other antioxidants like RET, CoQ10, and NAC to identify synergistic effects. <b>Results:</b> The combination of EGCG + RET and EGCG + CoQ10 showed the most significant increase in both elastin and collagen type I synthesis, surpassing the effects of individual antioxidants. EGCG demonstrated the highest fold change in elastin mRNA expression, while the combination treatments notably enhanced the extracellular matrix restoration in HDFs. <b>Conclusion:</b> The combination of EGCG with CoQ10, Retinol, or NAC presents a promising strategy for enhancing skin elasticity and firmness by promoting both elastin and collagen synthesis. These findings suggest that antioxidant combinations can be developed for effective anti-aging skincare formulations.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251341159"},"PeriodicalIF":1.0,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143965401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asmaa' Mohd Satar, Farah Amna Othman, Suat Cheng Tan
{"title":"Harnessing biomaterial application strategies for neurorestoration after ischemic stroke injury: An emerging treatment option.","authors":"Asmaa' Mohd Satar, Farah Amna Othman, Suat Cheng Tan","doi":"10.1177/09592989241306679","DOIUrl":"10.1177/09592989241306679","url":null,"abstract":"<p><p>BackgroundIschemic stroke is a medical condition caused by occlusion of blood vessels in brain, resulting in disruption of blood flow to the brain and triggering irreversible damage to the neuronal cells. While stem cells transplantation has been proposed as a potential alternative therapym for ischemic stroke, its effectiveness is limited due to low cell survival rate and potential side effects following transplantation. To overcome these challenges and enhance therapeutics efficacy, researchers have focused on developing various biomaterials to create a sustainable cellular microenvironment or to modify the properties of donor stem cell which could optimize their reparative functions in injured brain tissues.ObjectiveThis review aims to explore and discuss the different types of biomaterials that have been applied in the treatment of ischemic stroke, shedding light on their potentials as promising therapeutics options for this debilitating condition.MethodsLiterature search was performed to identify publications studying the potential of three biomaterials namely: nanobioparticles, hydrogels and extracellular vesicles for ischemic stroke therapy in vitro, in vivo or in clinical using four databases, namely: PubMed, ScienceDirect, Web of Science and Scopus.Results and discussionThe major benefits obtained from the application of nanobioparticles for ischemic stroke therapy included as the nanocarrier for drug/cell delivery, cell tracking, real time imaging, promote cell proliferation, while hydrogels provided scaffold support and conferred neuroprotection to stem cells, as well as provided neurotropic effects and controlled drug release for localized treatment. Lastly the extracellular vesicles were identified as a cell-free treatment strategy in promoting angiogenesis, neuronal differentiation and neurogenesis for ischemic stroke treatment.ConclusionBiomaterial-based therapies have their own potentials and further clinical investigations are strongly recommended to translate the therapies into more conscientious evidence-based therapy for clinical application.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"151-162"},"PeriodicalIF":1.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143456816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}