Mohd Faruq Abdul Latif, Nik Nazri Nik Ghazali, M F Abdullah, Norliza Binti Ibrahim, Roziana Mohd Razi, Tmys Tuan Ya, Irfan Anjum Badruddin, Sarfaraz Kamangar, Asa Zedan, Abdul Azeem Khan
{"title":"上呼吸道建模及下颌前移手术的验证。","authors":"Mohd Faruq Abdul Latif, Nik Nazri Nik Ghazali, M F Abdullah, Norliza Binti Ibrahim, Roziana Mohd Razi, Tmys Tuan Ya, Irfan Anjum Badruddin, Sarfaraz Kamangar, Asa Zedan, Abdul Azeem Khan","doi":"10.1177/09592989251341127","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Most Obstructive Sleep Apnoea (OSA) treatments use cross-sectional examination of the Upper Airways (UA) to determine decreasing gap and UA length. Surgery is detrimental to all OSA patients, stressing the need for better assessment.ObjectiveThis study integrates Computational Fluid Dynamics (CFD) with physical model validation to improve OSA prediction and turbulence model accuracy and dependability.MethodsThe k-omega SST turbulence model is used to analyse OSA using CFD. SLS is used to build a physical model of the UA for CFD simulations. The UA's physical model is then compared to the OSA-recommended CFD turbulence model to verify simulation-physical reality coherence.ResultThe average UA pressure differential decreases considerably after mandibular advancement surgery. The Turbulent Kinetic Energy (TKE) increases after surgery, indicating more turbulence. Cross-validation of the physical model confirms the OSA CFD turbulence simulation's validity.ConclusionThe study concludes that matching UA simulations with physical models improves OSA assessments. CFD with established physical models is a reliable method for assessing OSA therapy, especially surgical operations. The post-surgery increase in TKE needs more study to determine its effects on OSA treatment outcomes.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251341127"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper airways modelling and validation of mandibular advancement surgery.\",\"authors\":\"Mohd Faruq Abdul Latif, Nik Nazri Nik Ghazali, M F Abdullah, Norliza Binti Ibrahim, Roziana Mohd Razi, Tmys Tuan Ya, Irfan Anjum Badruddin, Sarfaraz Kamangar, Asa Zedan, Abdul Azeem Khan\",\"doi\":\"10.1177/09592989251341127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Most Obstructive Sleep Apnoea (OSA) treatments use cross-sectional examination of the Upper Airways (UA) to determine decreasing gap and UA length. Surgery is detrimental to all OSA patients, stressing the need for better assessment.ObjectiveThis study integrates Computational Fluid Dynamics (CFD) with physical model validation to improve OSA prediction and turbulence model accuracy and dependability.MethodsThe k-omega SST turbulence model is used to analyse OSA using CFD. SLS is used to build a physical model of the UA for CFD simulations. The UA's physical model is then compared to the OSA-recommended CFD turbulence model to verify simulation-physical reality coherence.ResultThe average UA pressure differential decreases considerably after mandibular advancement surgery. The Turbulent Kinetic Energy (TKE) increases after surgery, indicating more turbulence. Cross-validation of the physical model confirms the OSA CFD turbulence simulation's validity.ConclusionThe study concludes that matching UA simulations with physical models improves OSA assessments. CFD with established physical models is a reliable method for assessing OSA therapy, especially surgical operations. The post-surgery increase in TKE needs more study to determine its effects on OSA treatment outcomes.</p>\",\"PeriodicalId\":9109,\"journal\":{\"name\":\"Bio-medical materials and engineering\",\"volume\":\" \",\"pages\":\"9592989251341127\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-medical materials and engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09592989251341127\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09592989251341127","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Upper airways modelling and validation of mandibular advancement surgery.
Background: Most Obstructive Sleep Apnoea (OSA) treatments use cross-sectional examination of the Upper Airways (UA) to determine decreasing gap and UA length. Surgery is detrimental to all OSA patients, stressing the need for better assessment.ObjectiveThis study integrates Computational Fluid Dynamics (CFD) with physical model validation to improve OSA prediction and turbulence model accuracy and dependability.MethodsThe k-omega SST turbulence model is used to analyse OSA using CFD. SLS is used to build a physical model of the UA for CFD simulations. The UA's physical model is then compared to the OSA-recommended CFD turbulence model to verify simulation-physical reality coherence.ResultThe average UA pressure differential decreases considerably after mandibular advancement surgery. The Turbulent Kinetic Energy (TKE) increases after surgery, indicating more turbulence. Cross-validation of the physical model confirms the OSA CFD turbulence simulation's validity.ConclusionThe study concludes that matching UA simulations with physical models improves OSA assessments. CFD with established physical models is a reliable method for assessing OSA therapy, especially surgical operations. The post-surgery increase in TKE needs more study to determine its effects on OSA treatment outcomes.
期刊介绍:
The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.