BMP-2促进小鼠磷酸钙基复合材料的新骨形成。

IF 1 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Liuxing He, Xue Wang, Nana Xiong, Zhihong Dong, Lijia Cheng
{"title":"BMP-2促进小鼠磷酸钙基复合材料的新骨形成。","authors":"Liuxing He, Xue Wang, Nana Xiong, Zhihong Dong, Lijia Cheng","doi":"10.1177/09592989251346468","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Autologous bone grafting, particularly using iliac crest bone grafts, historically been considered the gold standard for bone grafting. However, its limited availability and secondary surgical trauma associated with the procedure have restricted its widespread application.</p><p><strong>Objective: </strong>To investigate the osteogenic potential of calcium phosphate-based composites with or without the addition of bone morphogenetic protein-2 (BMP-2).</p><p><strong>Methods: </strong>The BMP-2/calcium phosphate (CaP)/temperature-sensitive hydrogel (BCT) composite was synthesized, while the CaP/temperature-sensitive hydrogel (CT) composite was prepared as control group. The surface morphology of the composites was observed using scanning electron microscope (SEM). Subsequently, the composites were co-cultured with mouse bone marrow mesenchymal stem cells (BMSCs), and the cell proliferation, alkaline phosphatase (ALP) activity and extracellular matrix (ECM) mineralization were assessed. The composites were injected into the muscle of mice, and the samples underwent hematoxylin and eosin (HE), Masson-trichrome, and safranin and fast green staining. Immunohistochemistry for BMP-2 and type I collagen (ColI) was performed at weeks 8 and 12.</p><p><strong>Results: </strong>There was no significant difference in cell proliferation between the BCT and CT groups. However, the relative ALP activity and ECM mineralization were significantly higher in BCT group compared to the CT group (<i>P</i> < 0.05). BMP-2 accelerated the osteoinduction process and promoted the formation of more new bone tissue and bone marrow in group BCT. The number of osteocytes and the collagen area ratio were significantly higher in group BCT than that in group CT (<i>P</i> < 0.05).</p><p><strong>Conclusion: </strong>BMP-2 and CaP synergistically accelerated the initiation of osteoinduction, and promoted increased bone formation. The temperature-sensitive hydrogel made the material injectable, expanding its range of applications. The BCT composite shows promise as an artificial bone material.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251346468"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BMP-2 enhanced new bone formation of calcium phosphate-based composites in mice.\",\"authors\":\"Liuxing He, Xue Wang, Nana Xiong, Zhihong Dong, Lijia Cheng\",\"doi\":\"10.1177/09592989251346468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Autologous bone grafting, particularly using iliac crest bone grafts, historically been considered the gold standard for bone grafting. However, its limited availability and secondary surgical trauma associated with the procedure have restricted its widespread application.</p><p><strong>Objective: </strong>To investigate the osteogenic potential of calcium phosphate-based composites with or without the addition of bone morphogenetic protein-2 (BMP-2).</p><p><strong>Methods: </strong>The BMP-2/calcium phosphate (CaP)/temperature-sensitive hydrogel (BCT) composite was synthesized, while the CaP/temperature-sensitive hydrogel (CT) composite was prepared as control group. The surface morphology of the composites was observed using scanning electron microscope (SEM). Subsequently, the composites were co-cultured with mouse bone marrow mesenchymal stem cells (BMSCs), and the cell proliferation, alkaline phosphatase (ALP) activity and extracellular matrix (ECM) mineralization were assessed. The composites were injected into the muscle of mice, and the samples underwent hematoxylin and eosin (HE), Masson-trichrome, and safranin and fast green staining. Immunohistochemistry for BMP-2 and type I collagen (ColI) was performed at weeks 8 and 12.</p><p><strong>Results: </strong>There was no significant difference in cell proliferation between the BCT and CT groups. However, the relative ALP activity and ECM mineralization were significantly higher in BCT group compared to the CT group (<i>P</i> < 0.05). BMP-2 accelerated the osteoinduction process and promoted the formation of more new bone tissue and bone marrow in group BCT. The number of osteocytes and the collagen area ratio were significantly higher in group BCT than that in group CT (<i>P</i> < 0.05).</p><p><strong>Conclusion: </strong>BMP-2 and CaP synergistically accelerated the initiation of osteoinduction, and promoted increased bone formation. The temperature-sensitive hydrogel made the material injectable, expanding its range of applications. The BCT composite shows promise as an artificial bone material.</p>\",\"PeriodicalId\":9109,\"journal\":{\"name\":\"Bio-medical materials and engineering\",\"volume\":\" \",\"pages\":\"9592989251346468\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-medical materials and engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09592989251346468\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09592989251346468","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:自体骨移植,尤其是髂骨骨移植,历来被认为是骨移植的金标准。然而,其有限的可用性和与手术相关的继发性外科创伤限制了其广泛应用。目的:研究骨形态发生蛋白-2 (BMP-2)在磷酸钙基复合材料中添加或不添加BMP-2的成骨潜能。方法:合成BMP-2/磷酸钙(CaP)/温度敏感水凝胶(BCT)复合物,制备CaP/温度敏感水凝胶(CT)复合物作为对照组。利用扫描电镜(SEM)观察复合材料的表面形貌。随后,将复合材料与小鼠骨髓间充质干细胞(BMSCs)共培养,评估细胞增殖、碱性磷酸酶(ALP)活性和细胞外基质(ECM)矿化。将复合材料注射到小鼠肌肉中,对样品进行苏木精和伊红(HE)、马松三色、红花红和快速绿色染色。在第8周和第12周进行BMP-2和I型胶原(ColI)的免疫组化。结果:BCT组与CT组间细胞增殖无明显差异。然而,BCT组ALP活性和ECM矿化明显高于CT组(P P结论:BMP-2和CaP协同加速骨诱导的启动,促进骨形成增加。温度敏感的水凝胶使材料可注射,扩大了其应用范围。BCT复合材料作为一种人工骨材料具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BMP-2 enhanced new bone formation of calcium phosphate-based composites in mice.

Background: Autologous bone grafting, particularly using iliac crest bone grafts, historically been considered the gold standard for bone grafting. However, its limited availability and secondary surgical trauma associated with the procedure have restricted its widespread application.

Objective: To investigate the osteogenic potential of calcium phosphate-based composites with or without the addition of bone morphogenetic protein-2 (BMP-2).

Methods: The BMP-2/calcium phosphate (CaP)/temperature-sensitive hydrogel (BCT) composite was synthesized, while the CaP/temperature-sensitive hydrogel (CT) composite was prepared as control group. The surface morphology of the composites was observed using scanning electron microscope (SEM). Subsequently, the composites were co-cultured with mouse bone marrow mesenchymal stem cells (BMSCs), and the cell proliferation, alkaline phosphatase (ALP) activity and extracellular matrix (ECM) mineralization were assessed. The composites were injected into the muscle of mice, and the samples underwent hematoxylin and eosin (HE), Masson-trichrome, and safranin and fast green staining. Immunohistochemistry for BMP-2 and type I collagen (ColI) was performed at weeks 8 and 12.

Results: There was no significant difference in cell proliferation between the BCT and CT groups. However, the relative ALP activity and ECM mineralization were significantly higher in BCT group compared to the CT group (P < 0.05). BMP-2 accelerated the osteoinduction process and promoted the formation of more new bone tissue and bone marrow in group BCT. The number of osteocytes and the collagen area ratio were significantly higher in group BCT than that in group CT (P < 0.05).

Conclusion: BMP-2 and CaP synergistically accelerated the initiation of osteoinduction, and promoted increased bone formation. The temperature-sensitive hydrogel made the material injectable, expanding its range of applications. The BCT composite shows promise as an artificial bone material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bio-medical materials and engineering
Bio-medical materials and engineering 工程技术-材料科学:生物材料
CiteScore
1.80
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信