利用生物材料应用策略进行缺血性脑卒中损伤后的神经修复:一种新兴的治疗选择。

IF 1 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Bio-medical materials and engineering Pub Date : 2025-05-01 Epub Date: 2025-01-09 DOI:10.1177/09592989241306679
Asmaa' Mohd Satar, Farah Amna Othman, Suat Cheng Tan
{"title":"利用生物材料应用策略进行缺血性脑卒中损伤后的神经修复:一种新兴的治疗选择。","authors":"Asmaa' Mohd Satar, Farah Amna Othman, Suat Cheng Tan","doi":"10.1177/09592989241306679","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundIschemic stroke is a medical condition caused by occlusion of blood vessels in brain, resulting in disruption of blood flow to the brain and triggering irreversible damage to the neuronal cells. While stem cells transplantation has been proposed as a potential alternative therapym for ischemic stroke, its effectiveness is limited due to low cell survival rate and potential side effects following transplantation. To overcome these challenges and enhance therapeutics efficacy, researchers have focused on developing various biomaterials to create a sustainable cellular microenvironment or to modify the properties of donor stem cell which could optimize their reparative functions in injured brain tissues.ObjectiveThis review aims to explore and discuss the different types of biomaterials that have been applied in the treatment of ischemic stroke, shedding light on their potentials as promising therapeutics options for this debilitating condition.MethodsLiterature search was performed to identify publications studying the potential of three biomaterials namely: nanobioparticles, hydrogels and extracellular vesicles for ischemic stroke therapy in vitro, in vivo or in clinical using four databases, namely: PubMed, ScienceDirect, Web of Science and Scopus.Results and discussionThe major benefits obtained from the application of nanobioparticles for ischemic stroke therapy included as the nanocarrier for drug/cell delivery, cell tracking, real time imaging, promote cell proliferation, while hydrogels provided scaffold support and conferred neuroprotection to stem cells, as well as provided neurotropic effects and controlled drug release for localized treatment. Lastly the extracellular vesicles were identified as a cell-free treatment strategy in promoting angiogenesis, neuronal differentiation and neurogenesis for ischemic stroke treatment.ConclusionBiomaterial-based therapies have their own potentials and further clinical investigations are strongly recommended to translate the therapies into more conscientious evidence-based therapy for clinical application.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"151-162"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing biomaterial application strategies for neurorestoration after ischemic stroke injury: An emerging treatment option.\",\"authors\":\"Asmaa' Mohd Satar, Farah Amna Othman, Suat Cheng Tan\",\"doi\":\"10.1177/09592989241306679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundIschemic stroke is a medical condition caused by occlusion of blood vessels in brain, resulting in disruption of blood flow to the brain and triggering irreversible damage to the neuronal cells. While stem cells transplantation has been proposed as a potential alternative therapym for ischemic stroke, its effectiveness is limited due to low cell survival rate and potential side effects following transplantation. To overcome these challenges and enhance therapeutics efficacy, researchers have focused on developing various biomaterials to create a sustainable cellular microenvironment or to modify the properties of donor stem cell which could optimize their reparative functions in injured brain tissues.ObjectiveThis review aims to explore and discuss the different types of biomaterials that have been applied in the treatment of ischemic stroke, shedding light on their potentials as promising therapeutics options for this debilitating condition.MethodsLiterature search was performed to identify publications studying the potential of three biomaterials namely: nanobioparticles, hydrogels and extracellular vesicles for ischemic stroke therapy in vitro, in vivo or in clinical using four databases, namely: PubMed, ScienceDirect, Web of Science and Scopus.Results and discussionThe major benefits obtained from the application of nanobioparticles for ischemic stroke therapy included as the nanocarrier for drug/cell delivery, cell tracking, real time imaging, promote cell proliferation, while hydrogels provided scaffold support and conferred neuroprotection to stem cells, as well as provided neurotropic effects and controlled drug release for localized treatment. Lastly the extracellular vesicles were identified as a cell-free treatment strategy in promoting angiogenesis, neuronal differentiation and neurogenesis for ischemic stroke treatment.ConclusionBiomaterial-based therapies have their own potentials and further clinical investigations are strongly recommended to translate the therapies into more conscientious evidence-based therapy for clinical application.</p>\",\"PeriodicalId\":9109,\"journal\":{\"name\":\"Bio-medical materials and engineering\",\"volume\":\" \",\"pages\":\"151-162\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-medical materials and engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09592989241306679\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09592989241306679","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:缺血性中风是由脑血管闭塞引起的一种医学病症,导致流向大脑的血液中断,并对神经元细胞造成不可逆的损伤。虽然干细胞移植已被提出作为缺血性中风的潜在替代治疗方法,但由于移植后细胞存活率低和潜在的副作用,其有效性受到限制。为了克服这些挑战并提高治疗效果,研究人员一直致力于开发各种生物材料来创造可持续的细胞微环境或修改供体干细胞的特性,以优化其在损伤脑组织中的修复功能。目的:本综述旨在探索和讨论不同类型的生物材料在缺血性卒中治疗中的应用,揭示它们作为这种衰弱性疾病的有希望的治疗选择的潜力。方法:通过PubMed、ScienceDirect、Web of Science和Scopus四个数据库,检索研究纳米颗粒、水凝胶和细胞外囊泡三种生物材料在体外、体内和临床缺血性卒中治疗中的潜力的出版物。结果和讨论:纳米生物颗粒用于缺血性卒中治疗的主要好处包括作为药物/细胞递送的纳米载体,细胞跟踪,实时成像,促进细胞增殖,而水凝胶提供支架支持并赋予干细胞神经保护,以及为局部治疗提供神经营养作用和控制药物释放。最后,细胞外囊泡被确定为促进血管生成、神经元分化和神经发生的无细胞治疗策略,用于缺血性卒中治疗。结论:基于生物材料的治疗有其自身的潜力,强烈建议进一步的临床研究将其转化为更严谨的循证治疗,以供临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnessing biomaterial application strategies for neurorestoration after ischemic stroke injury: An emerging treatment option.

BackgroundIschemic stroke is a medical condition caused by occlusion of blood vessels in brain, resulting in disruption of blood flow to the brain and triggering irreversible damage to the neuronal cells. While stem cells transplantation has been proposed as a potential alternative therapym for ischemic stroke, its effectiveness is limited due to low cell survival rate and potential side effects following transplantation. To overcome these challenges and enhance therapeutics efficacy, researchers have focused on developing various biomaterials to create a sustainable cellular microenvironment or to modify the properties of donor stem cell which could optimize their reparative functions in injured brain tissues.ObjectiveThis review aims to explore and discuss the different types of biomaterials that have been applied in the treatment of ischemic stroke, shedding light on their potentials as promising therapeutics options for this debilitating condition.MethodsLiterature search was performed to identify publications studying the potential of three biomaterials namely: nanobioparticles, hydrogels and extracellular vesicles for ischemic stroke therapy in vitro, in vivo or in clinical using four databases, namely: PubMed, ScienceDirect, Web of Science and Scopus.Results and discussionThe major benefits obtained from the application of nanobioparticles for ischemic stroke therapy included as the nanocarrier for drug/cell delivery, cell tracking, real time imaging, promote cell proliferation, while hydrogels provided scaffold support and conferred neuroprotection to stem cells, as well as provided neurotropic effects and controlled drug release for localized treatment. Lastly the extracellular vesicles were identified as a cell-free treatment strategy in promoting angiogenesis, neuronal differentiation and neurogenesis for ischemic stroke treatment.ConclusionBiomaterial-based therapies have their own potentials and further clinical investigations are strongly recommended to translate the therapies into more conscientious evidence-based therapy for clinical application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bio-medical materials and engineering
Bio-medical materials and engineering 工程技术-材料科学:生物材料
CiteScore
1.80
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信