以脱氧胆酸为共成体的苯丙啶共非晶态体系:通过机器学习的近红外在线过程监测。

IF 1.3 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Yuta Otsuka, Kiyotada Naitou, Takeshi Miyata
{"title":"以脱氧胆酸为共成体的苯丙啶共非晶态体系:通过机器学习的近红外在线过程监测。","authors":"Yuta Otsuka, Kiyotada Naitou, Takeshi Miyata","doi":"10.1177/09592989251353457","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundVarious methods have been reported for improving the water-insoluble drugs in oral administration formulations. Among them, amorphization has been attracting attention and developed as a method for solubilizing API (active pharmaceutical ingredient)s by changing their physicochemical properties. Molecular complexation is also known as a method for solubilizing APIs by synthesizing cocrystals, etc. Co-amorphization, which achieves both molecular complexation and amorphization, is effective and has attracted attention. Thus, co-amorphization has been proven to be an effective approach to solubilization.ObjectiveThis study aims to improve the solubility of lumefantrine, used here as a model compound, through co-amorphization with deoxycholic acid.SignificanceThe physicochemical properties are an important factor in developing pharmaceutical ingredients. Hydrogen-bonded co-amorphization has gained attention as a method to enhance the physicochemical properties of hydrophobic drugs.MethodsThe co-amorphous Lumefantrine-deoxycholic acid system was prepared using a mechanochemical synthesis method based on ball milling. The synthesis process was monitored by powder X-ray diffraction and near-infrared spectroscopy. The products and materials were analyzed by thermal analysis.ResultsSpectroscopic analysis revealed that the two molecules were complexed through intermolecular hydrogen bonding interactions. The produced co-amorphous has no melting point was found by thermal analysis.ConclusionsProcess monitoring also indicated the presence of a metastable crystalline Lumefantrine (LMF) intermediate.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251353457"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lumefantrine co-amorphous systems using deoxycholic acid as a co-former: NIR at-line process monitoring by machine learning.\",\"authors\":\"Yuta Otsuka, Kiyotada Naitou, Takeshi Miyata\",\"doi\":\"10.1177/09592989251353457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundVarious methods have been reported for improving the water-insoluble drugs in oral administration formulations. Among them, amorphization has been attracting attention and developed as a method for solubilizing API (active pharmaceutical ingredient)s by changing their physicochemical properties. Molecular complexation is also known as a method for solubilizing APIs by synthesizing cocrystals, etc. Co-amorphization, which achieves both molecular complexation and amorphization, is effective and has attracted attention. Thus, co-amorphization has been proven to be an effective approach to solubilization.ObjectiveThis study aims to improve the solubility of lumefantrine, used here as a model compound, through co-amorphization with deoxycholic acid.SignificanceThe physicochemical properties are an important factor in developing pharmaceutical ingredients. Hydrogen-bonded co-amorphization has gained attention as a method to enhance the physicochemical properties of hydrophobic drugs.MethodsThe co-amorphous Lumefantrine-deoxycholic acid system was prepared using a mechanochemical synthesis method based on ball milling. The synthesis process was monitored by powder X-ray diffraction and near-infrared spectroscopy. The products and materials were analyzed by thermal analysis.ResultsSpectroscopic analysis revealed that the two molecules were complexed through intermolecular hydrogen bonding interactions. The produced co-amorphous has no melting point was found by thermal analysis.ConclusionsProcess monitoring also indicated the presence of a metastable crystalline Lumefantrine (LMF) intermediate.</p>\",\"PeriodicalId\":9109,\"journal\":{\"name\":\"Bio-medical materials and engineering\",\"volume\":\" \",\"pages\":\"9592989251353457\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-medical materials and engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09592989251353457\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09592989251353457","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:为了改善口服给药制剂中的水不溶性药物,已经报道了各种方法。其中,非晶化作为一种通过改变原料药的理化性质来增溶原料药的方法受到了广泛的关注和发展。分子络合也被称为通过合成共晶等来增溶原料药的方法。同时实现分子络合和非晶化的共非晶化是一种有效的方法,受到了广泛的关注。因此,共非晶化已被证明是一种有效的增溶方法。目的本研究旨在通过与脱氧胆酸共晶化来提高甲苯胺作为模型化合物的溶解度。理化性质是开发药物成分的重要因素。氢键共晶化作为提高疏水药物理化性能的一种方法受到了广泛的关注。方法采用基于球磨的机械化学合成方法制备共非晶态甲苯胺-脱氧胆酸体系。采用粉末x射线衍射和近红外光谱对合成过程进行了监测。用热分析法对产品和材料进行了分析。结果光谱分析表明,两个分子通过分子间氢键相互作用络合。通过热分析发现,所制得的共晶无熔点。结论过程监测还显示了一种亚稳态晶体发光方明(LMF)中间体的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lumefantrine co-amorphous systems using deoxycholic acid as a co-former: NIR at-line process monitoring by machine learning.

BackgroundVarious methods have been reported for improving the water-insoluble drugs in oral administration formulations. Among them, amorphization has been attracting attention and developed as a method for solubilizing API (active pharmaceutical ingredient)s by changing their physicochemical properties. Molecular complexation is also known as a method for solubilizing APIs by synthesizing cocrystals, etc. Co-amorphization, which achieves both molecular complexation and amorphization, is effective and has attracted attention. Thus, co-amorphization has been proven to be an effective approach to solubilization.ObjectiveThis study aims to improve the solubility of lumefantrine, used here as a model compound, through co-amorphization with deoxycholic acid.SignificanceThe physicochemical properties are an important factor in developing pharmaceutical ingredients. Hydrogen-bonded co-amorphization has gained attention as a method to enhance the physicochemical properties of hydrophobic drugs.MethodsThe co-amorphous Lumefantrine-deoxycholic acid system was prepared using a mechanochemical synthesis method based on ball milling. The synthesis process was monitored by powder X-ray diffraction and near-infrared spectroscopy. The products and materials were analyzed by thermal analysis.ResultsSpectroscopic analysis revealed that the two molecules were complexed through intermolecular hydrogen bonding interactions. The produced co-amorphous has no melting point was found by thermal analysis.ConclusionsProcess monitoring also indicated the presence of a metastable crystalline Lumefantrine (LMF) intermediate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bio-medical materials and engineering
Bio-medical materials and engineering 工程技术-材料科学:生物材料
CiteScore
1.80
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信