{"title":"以脱氧胆酸为共成体的苯丙啶共非晶态体系:通过机器学习的近红外在线过程监测。","authors":"Yuta Otsuka, Kiyotada Naitou, Takeshi Miyata","doi":"10.1177/09592989251353457","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundVarious methods have been reported for improving the water-insoluble drugs in oral administration formulations. Among them, amorphization has been attracting attention and developed as a method for solubilizing API (active pharmaceutical ingredient)s by changing their physicochemical properties. Molecular complexation is also known as a method for solubilizing APIs by synthesizing cocrystals, etc. Co-amorphization, which achieves both molecular complexation and amorphization, is effective and has attracted attention. Thus, co-amorphization has been proven to be an effective approach to solubilization.ObjectiveThis study aims to improve the solubility of lumefantrine, used here as a model compound, through co-amorphization with deoxycholic acid.SignificanceThe physicochemical properties are an important factor in developing pharmaceutical ingredients. Hydrogen-bonded co-amorphization has gained attention as a method to enhance the physicochemical properties of hydrophobic drugs.MethodsThe co-amorphous Lumefantrine-deoxycholic acid system was prepared using a mechanochemical synthesis method based on ball milling. The synthesis process was monitored by powder X-ray diffraction and near-infrared spectroscopy. The products and materials were analyzed by thermal analysis.ResultsSpectroscopic analysis revealed that the two molecules were complexed through intermolecular hydrogen bonding interactions. The produced co-amorphous has no melting point was found by thermal analysis.ConclusionsProcess monitoring also indicated the presence of a metastable crystalline Lumefantrine (LMF) intermediate.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989251353457"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lumefantrine co-amorphous systems using deoxycholic acid as a co-former: NIR at-line process monitoring by machine learning.\",\"authors\":\"Yuta Otsuka, Kiyotada Naitou, Takeshi Miyata\",\"doi\":\"10.1177/09592989251353457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundVarious methods have been reported for improving the water-insoluble drugs in oral administration formulations. Among them, amorphization has been attracting attention and developed as a method for solubilizing API (active pharmaceutical ingredient)s by changing their physicochemical properties. Molecular complexation is also known as a method for solubilizing APIs by synthesizing cocrystals, etc. Co-amorphization, which achieves both molecular complexation and amorphization, is effective and has attracted attention. Thus, co-amorphization has been proven to be an effective approach to solubilization.ObjectiveThis study aims to improve the solubility of lumefantrine, used here as a model compound, through co-amorphization with deoxycholic acid.SignificanceThe physicochemical properties are an important factor in developing pharmaceutical ingredients. Hydrogen-bonded co-amorphization has gained attention as a method to enhance the physicochemical properties of hydrophobic drugs.MethodsThe co-amorphous Lumefantrine-deoxycholic acid system was prepared using a mechanochemical synthesis method based on ball milling. The synthesis process was monitored by powder X-ray diffraction and near-infrared spectroscopy. The products and materials were analyzed by thermal analysis.ResultsSpectroscopic analysis revealed that the two molecules were complexed through intermolecular hydrogen bonding interactions. The produced co-amorphous has no melting point was found by thermal analysis.ConclusionsProcess monitoring also indicated the presence of a metastable crystalline Lumefantrine (LMF) intermediate.</p>\",\"PeriodicalId\":9109,\"journal\":{\"name\":\"Bio-medical materials and engineering\",\"volume\":\" \",\"pages\":\"9592989251353457\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-medical materials and engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09592989251353457\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09592989251353457","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Lumefantrine co-amorphous systems using deoxycholic acid as a co-former: NIR at-line process monitoring by machine learning.
BackgroundVarious methods have been reported for improving the water-insoluble drugs in oral administration formulations. Among them, amorphization has been attracting attention and developed as a method for solubilizing API (active pharmaceutical ingredient)s by changing their physicochemical properties. Molecular complexation is also known as a method for solubilizing APIs by synthesizing cocrystals, etc. Co-amorphization, which achieves both molecular complexation and amorphization, is effective and has attracted attention. Thus, co-amorphization has been proven to be an effective approach to solubilization.ObjectiveThis study aims to improve the solubility of lumefantrine, used here as a model compound, through co-amorphization with deoxycholic acid.SignificanceThe physicochemical properties are an important factor in developing pharmaceutical ingredients. Hydrogen-bonded co-amorphization has gained attention as a method to enhance the physicochemical properties of hydrophobic drugs.MethodsThe co-amorphous Lumefantrine-deoxycholic acid system was prepared using a mechanochemical synthesis method based on ball milling. The synthesis process was monitored by powder X-ray diffraction and near-infrared spectroscopy. The products and materials were analyzed by thermal analysis.ResultsSpectroscopic analysis revealed that the two molecules were complexed through intermolecular hydrogen bonding interactions. The produced co-amorphous has no melting point was found by thermal analysis.ConclusionsProcess monitoring also indicated the presence of a metastable crystalline Lumefantrine (LMF) intermediate.
期刊介绍:
The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.