全膝关节置换术后内翻/外翻应力x线中股骨和胫骨部件之间的旋转角度。

IF 1.3 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Bio-medical materials and engineering Pub Date : 2025-03-01 Epub Date: 2025-01-10 DOI:10.1177/09592989241304989
Hiroki Hijikata, Tomoharu Mochizuki, Keisuku Maeda, Osamu Tanifuji, Go Omori, Noriaki Yamamoto, Hiroyuki Kawashima
{"title":"全膝关节置换术后内翻/外翻应力x线中股骨和胫骨部件之间的旋转角度。","authors":"Hiroki Hijikata, Tomoharu Mochizuki, Keisuku Maeda, Osamu Tanifuji, Go Omori, Noriaki Yamamoto, Hiroyuki Kawashima","doi":"10.1177/09592989241304989","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundThe impact of rotational angle between the femoral and tibial components is often overlooked in the 2D evaluation of varus/valgus stability after TKA with anterior-posterior knee X-rays. The rotation angle between the femoral and tibial components may influence the measured angle and distance between these components in 2D stress X-rays following TKA.ObjectiveThe purpose of this study was to assess the impact of the rotational angle between the femoral and tibial components on the evaluation of varus/valgus stability using stress X-rays following total knee arthroplasty (TKA).MethodsThis prospective study analyzed 48 consecutive rTKAs (three males, aged 68 ± 6.4 years; 45 females, aged 75 ± 5.9 years). Postoperative varus/valgus stress X-rays were taken at maximum manual stress during knee extension under anesthesia, and were analyzed three-dimensionally using a 2D-3D image matching technique with 3D bone and component models. The rotation angles of the components (CR angles) were assessed under conditions of no stress, valgus stress, and varus stress. Additionally, the varus/valgus angle (VV angle) between components was evaluated under the same conditions. Medial joint opening (MJO) and lateral joint opening (LJO) were also measured in both stressed and non-stressed states.ResultsThe CR angles under no stress, valgus stress, and varus stress were 9.9 ± 5.5°, 10.1 ± 6.2°, and 10.8 ± 5.1°, respectively. The VV angles under no stress, valgus stress, and varus stress were 3.6 ± 1.1°, 1.1 ± 1.4°, and 7.1 ± 1.9°, respectively. The MJO in the non-stress condition and under valgus stress were 0.0 ± 0.4 mm and 1.3 ± 1.0 mm, respectively. The LJO in the non-stress condition and under varus stress were 0.9 ± 0.9 mm and 2.9 ± 2.7 mm, respectively.ConclusionsThis prospective study revealed two key findings: (1) the CR angle in varus stress was significantly more externally rotated compared to the CR angle in the non-stress condition, and (2) no significant correlations were found between the rotational angle of the components and the VV angle, MJO, or LJO.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"124-132"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotation angle between the femoral and tibial components in varus/valgus stress X-rays following total knee arthroplasty.\",\"authors\":\"Hiroki Hijikata, Tomoharu Mochizuki, Keisuku Maeda, Osamu Tanifuji, Go Omori, Noriaki Yamamoto, Hiroyuki Kawashima\",\"doi\":\"10.1177/09592989241304989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundThe impact of rotational angle between the femoral and tibial components is often overlooked in the 2D evaluation of varus/valgus stability after TKA with anterior-posterior knee X-rays. The rotation angle between the femoral and tibial components may influence the measured angle and distance between these components in 2D stress X-rays following TKA.ObjectiveThe purpose of this study was to assess the impact of the rotational angle between the femoral and tibial components on the evaluation of varus/valgus stability using stress X-rays following total knee arthroplasty (TKA).MethodsThis prospective study analyzed 48 consecutive rTKAs (three males, aged 68 ± 6.4 years; 45 females, aged 75 ± 5.9 years). Postoperative varus/valgus stress X-rays were taken at maximum manual stress during knee extension under anesthesia, and were analyzed three-dimensionally using a 2D-3D image matching technique with 3D bone and component models. The rotation angles of the components (CR angles) were assessed under conditions of no stress, valgus stress, and varus stress. Additionally, the varus/valgus angle (VV angle) between components was evaluated under the same conditions. Medial joint opening (MJO) and lateral joint opening (LJO) were also measured in both stressed and non-stressed states.ResultsThe CR angles under no stress, valgus stress, and varus stress were 9.9 ± 5.5°, 10.1 ± 6.2°, and 10.8 ± 5.1°, respectively. The VV angles under no stress, valgus stress, and varus stress were 3.6 ± 1.1°, 1.1 ± 1.4°, and 7.1 ± 1.9°, respectively. The MJO in the non-stress condition and under valgus stress were 0.0 ± 0.4 mm and 1.3 ± 1.0 mm, respectively. The LJO in the non-stress condition and under varus stress were 0.9 ± 0.9 mm and 2.9 ± 2.7 mm, respectively.ConclusionsThis prospective study revealed two key findings: (1) the CR angle in varus stress was significantly more externally rotated compared to the CR angle in the non-stress condition, and (2) no significant correlations were found between the rotational angle of the components and the VV angle, MJO, or LJO.</p>\",\"PeriodicalId\":9109,\"journal\":{\"name\":\"Bio-medical materials and engineering\",\"volume\":\" \",\"pages\":\"124-132\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-medical materials and engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09592989241304989\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09592989241304989","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

导读:在膝关节前后x线对TKA后内翻/外翻稳定性的2D评估中,股骨和胫骨组件之间旋转角度的影响经常被忽视。股骨和胫骨构件之间的旋转角度可能影响TKA后二维应力x射线测量的这些构件之间的角度和距离。目的:本研究的目的是评估股骨和胫骨构件之间的旋转角度对全膝关节置换术(TKA)后使用应力x线评估内翻/外翻稳定性的影响。方法:本前瞻性研究分析了48例连续rtka患者(男性3例,年龄68±6.4岁;女性45例,年龄75±5.9岁)。术后内翻/外翻应力x光片在麻醉下膝关节伸展时以最大手动应力拍摄,并使用3D骨和部件模型的2D-3D图像匹配技术进行三维分析。在无应力、外翻应力和内翻应力条件下评估各组件的旋转角度(CR角)。此外,在相同的条件下,评估了组件之间的内翻角(VV角)。在应力和非应力状态下测量关节内侧开口(MJO)和外侧开口(LJO)。结果:无应力、外翻应力和内翻应力下CR角分别为9.9±5.5°、10.1±6.2°和10.8±5.1°。无应力、外翻应力和内翻应力下的VV角分别为3.6±1.1°、1.1±1.4°和7.1±1.9°。无应力状态下和外翻应力状态下的MJO分别为0.0±0.4 mm和1.3±1.0 mm。无应力状态下LJO为0.9±0.9 mm,内翻应力下LJO为2.9±2.7 mm。结论:这项前瞻性研究揭示了两个关键发现:(1)与非应力条件下的CR角相比,内翻应力条件下的CR角明显更向外旋转;(2)组件的旋转角度与VV角、MJO或LJO之间没有显著相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rotation angle between the femoral and tibial components in varus/valgus stress X-rays following total knee arthroplasty.

BackgroundThe impact of rotational angle between the femoral and tibial components is often overlooked in the 2D evaluation of varus/valgus stability after TKA with anterior-posterior knee X-rays. The rotation angle between the femoral and tibial components may influence the measured angle and distance between these components in 2D stress X-rays following TKA.ObjectiveThe purpose of this study was to assess the impact of the rotational angle between the femoral and tibial components on the evaluation of varus/valgus stability using stress X-rays following total knee arthroplasty (TKA).MethodsThis prospective study analyzed 48 consecutive rTKAs (three males, aged 68 ± 6.4 years; 45 females, aged 75 ± 5.9 years). Postoperative varus/valgus stress X-rays were taken at maximum manual stress during knee extension under anesthesia, and were analyzed three-dimensionally using a 2D-3D image matching technique with 3D bone and component models. The rotation angles of the components (CR angles) were assessed under conditions of no stress, valgus stress, and varus stress. Additionally, the varus/valgus angle (VV angle) between components was evaluated under the same conditions. Medial joint opening (MJO) and lateral joint opening (LJO) were also measured in both stressed and non-stressed states.ResultsThe CR angles under no stress, valgus stress, and varus stress were 9.9 ± 5.5°, 10.1 ± 6.2°, and 10.8 ± 5.1°, respectively. The VV angles under no stress, valgus stress, and varus stress were 3.6 ± 1.1°, 1.1 ± 1.4°, and 7.1 ± 1.9°, respectively. The MJO in the non-stress condition and under valgus stress were 0.0 ± 0.4 mm and 1.3 ± 1.0 mm, respectively. The LJO in the non-stress condition and under varus stress were 0.9 ± 0.9 mm and 2.9 ± 2.7 mm, respectively.ConclusionsThis prospective study revealed two key findings: (1) the CR angle in varus stress was significantly more externally rotated compared to the CR angle in the non-stress condition, and (2) no significant correlations were found between the rotational angle of the components and the VV angle, MJO, or LJO.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bio-medical materials and engineering
Bio-medical materials and engineering 工程技术-材料科学:生物材料
CiteScore
1.80
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信