{"title":"Algorithm-controlled RF power output for enhanced margin precision in liver cancer radiofrequency ablation.","authors":"Dandan Gu, Difang Liu, Haitao Yao, Danni Rui, Yifan Yang, Yu Zhou","doi":"10.1177/09592989241304992","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Percutaneous radiofrequency ablation (RFA) is a common method for treating liver cancer. Compared to other treatment modalities, RFA has a higher local tumor recurrence rate due to incomplete ablation. On the other hand, to ensure complete tumor removal, multiple ablations may be necessary, but this can lead to excessive thermal damage. Therefore, improving the precision of the ablation margin control is crucial.</p><p><strong>Objective: </strong>This study aims to investigate an algorithm-controlled ablation mode that can precisely control the tumor treatment margins. This mode uses temperature and impedance as feedback parameters to adaptively adjust the RF power output, ensuring both effective tumor ablation and enhanced safety.</p><p><strong>Methods: </strong>The study conducted finite element analyses and ex-vivo bovine liver experiments comparing traditional constant power ablation and the algorithm-controlled ablation mode. Simulations primarily analyzed the temperature changes and ablation area in biological tissue, assessing the effectiveness of the two ablation modes. In the ex-vivo bovine liver experiments, temperature and impedance were monitored in real-time to validate the feasibility of the algorithmic ablation mode.</p><p><strong>Results: </strong>The findings indicate that the algorithm-controlled ablation mode effectively controls the rise in tissue impedance, preventing carbonization and charring. For ablation diameters of 10 mm and 20 mm, it precisely maintained the boundary temperatures within the range of 50-60°C, ensuring effective damage at the ablation margins while avoiding excessive damage to normal tissue.</p><p><strong>Conclusion: </strong>This study developed an adaptive radiofrequency ablation algorithm for treating liver cancer, using temperature and impedance as feedback parameters. Preliminary results from finite element analysis and ex-vivo bovine liver experiments suggest that for small tumors with diameters of 10 mm and 20 mm, this algorithm may provide more precise control of the ablation zone, improving efficiency and safety compared to traditional constant power ablation.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"9592989241304992"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09592989241304992","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Percutaneous radiofrequency ablation (RFA) is a common method for treating liver cancer. Compared to other treatment modalities, RFA has a higher local tumor recurrence rate due to incomplete ablation. On the other hand, to ensure complete tumor removal, multiple ablations may be necessary, but this can lead to excessive thermal damage. Therefore, improving the precision of the ablation margin control is crucial.
Objective: This study aims to investigate an algorithm-controlled ablation mode that can precisely control the tumor treatment margins. This mode uses temperature and impedance as feedback parameters to adaptively adjust the RF power output, ensuring both effective tumor ablation and enhanced safety.
Methods: The study conducted finite element analyses and ex-vivo bovine liver experiments comparing traditional constant power ablation and the algorithm-controlled ablation mode. Simulations primarily analyzed the temperature changes and ablation area in biological tissue, assessing the effectiveness of the two ablation modes. In the ex-vivo bovine liver experiments, temperature and impedance were monitored in real-time to validate the feasibility of the algorithmic ablation mode.
Results: The findings indicate that the algorithm-controlled ablation mode effectively controls the rise in tissue impedance, preventing carbonization and charring. For ablation diameters of 10 mm and 20 mm, it precisely maintained the boundary temperatures within the range of 50-60°C, ensuring effective damage at the ablation margins while avoiding excessive damage to normal tissue.
Conclusion: This study developed an adaptive radiofrequency ablation algorithm for treating liver cancer, using temperature and impedance as feedback parameters. Preliminary results from finite element analysis and ex-vivo bovine liver experiments suggest that for small tumors with diameters of 10 mm and 20 mm, this algorithm may provide more precise control of the ablation zone, improving efficiency and safety compared to traditional constant power ablation.
期刊介绍:
The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.