Multi-scale topology optimisation design and mechanical property analysis of porous interbody fusion cage.

IF 1 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Bio-medical materials and engineering Pub Date : 2025-03-01 Epub Date: 2024-12-10 DOI:10.1177/09592989241303291
Huaiyue Zhang, Rongchang Fu, Xu Zhu
{"title":"Multi-scale topology optimisation design and mechanical property analysis of porous interbody fusion cage.","authors":"Huaiyue Zhang, Rongchang Fu, Xu Zhu","doi":"10.1177/09592989241303291","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundTitanium (Ti) and polyether ether ketone (PEEK) interbody fusion cages cause postoperative stress shielding problems. The porous cage design is one of the solutions advanced to mitigate this problem.ObjectiveExploring the mitigation of stress shielding with a porous interbody fusion cage after surgery for idiopathic scoliosis.MethodsThe porous interbody fusion cage was constructed based on the multiscale topology optimisation method, and the postoperative lumbar spine models implanted with it. The porous Ti and PEEK fusion cages were evaluated under physiological conditions to investigate their mechanical properties.ResultsThe volume of the porous fusion cage was reduced by 52.57%, and the stress was increased by 242.76% and 252.46% compared with the Ti and PEEK fusion cage; the modulus of elasticity of the porous fusion cage was reduced by 76.85%, and the strain was increased by 131.40%∼686.51% compared with the Ti cage; the porous fusion cage increased L3 cortical bone stress by 13.36% and 13.52% and cancellous bone by 82.93% and 76.72%, respectively, compared with the original interbody fusion cages.ConclusionThe porous interbody fusion cage has a much more lightweight design which facilitates growth of bone tissue. However, a frame structure should be constructed to minimize issues with stress peaks and localised stress concentrations. It also has a significantly lower stiffness which helps alleviate vertebral stress shielding, further fostering bone growth. The porous fusion cage thus meets the clinical requirements for better fusion outcomes.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"110-123"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09592989241303291","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

BackgroundTitanium (Ti) and polyether ether ketone (PEEK) interbody fusion cages cause postoperative stress shielding problems. The porous cage design is one of the solutions advanced to mitigate this problem.ObjectiveExploring the mitigation of stress shielding with a porous interbody fusion cage after surgery for idiopathic scoliosis.MethodsThe porous interbody fusion cage was constructed based on the multiscale topology optimisation method, and the postoperative lumbar spine models implanted with it. The porous Ti and PEEK fusion cages were evaluated under physiological conditions to investigate their mechanical properties.ResultsThe volume of the porous fusion cage was reduced by 52.57%, and the stress was increased by 242.76% and 252.46% compared with the Ti and PEEK fusion cage; the modulus of elasticity of the porous fusion cage was reduced by 76.85%, and the strain was increased by 131.40%∼686.51% compared with the Ti cage; the porous fusion cage increased L3 cortical bone stress by 13.36% and 13.52% and cancellous bone by 82.93% and 76.72%, respectively, compared with the original interbody fusion cages.ConclusionThe porous interbody fusion cage has a much more lightweight design which facilitates growth of bone tissue. However, a frame structure should be constructed to minimize issues with stress peaks and localised stress concentrations. It also has a significantly lower stiffness which helps alleviate vertebral stress shielding, further fostering bone growth. The porous fusion cage thus meets the clinical requirements for better fusion outcomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bio-medical materials and engineering
Bio-medical materials and engineering 工程技术-材料科学:生物材料
CiteScore
1.80
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信