算法控制射频功率输出,提高肝癌射频消融边缘精度。

IF 1.3 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Bio-medical materials and engineering Pub Date : 2025-03-01 Epub Date: 2024-12-12 DOI:10.1177/09592989241304992
Dandan Gu, Difang Liu, Haitao Yao, Danni Rui, Yifan Yang, Yu Zhou
{"title":"算法控制射频功率输出,提高肝癌射频消融边缘精度。","authors":"Dandan Gu, Difang Liu, Haitao Yao, Danni Rui, Yifan Yang, Yu Zhou","doi":"10.1177/09592989241304992","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundPercutaneous radiofrequency ablation (RFA) is a common method for treating liver cancer. Compared to other treatment modalities, RFA has a higher local tumor recurrence rate due to incomplete ablation. On the other hand, to ensure complete tumor removal, multiple ablations may be necessary, but this can lead to excessive thermal damage. Therefore, improving the precision of the ablation margin control is crucial.ObjectiveThis study aims to investigate an algorithm-controlled ablation mode that can precisely control the tumor treatment margins. This mode uses temperature and impedance as feedback parameters to adaptively adjust the RF power output, ensuring both effective tumor ablation and enhanced safety.MethodsThe study conducted finite element analyses and ex-vivo bovine liver experiments comparing traditional constant power ablation and the algorithm-controlled ablation mode. Simulations primarily analyzed the temperature changes and ablation area in biological tissue, assessing the effectiveness of the two ablation modes. In the ex-vivo bovine liver experiments, temperature and impedance were monitored in real-time to validate the feasibility of the algorithmic ablation mode.ResultsThe findings indicate that the algorithm-controlled ablation mode effectively controls the rise in tissue impedance, preventing carbonization and charring. For ablation diameters of 10 mm and 20 mm, it precisely maintained the boundary temperatures within the range of 50-60°C, ensuring effective damage at the ablation margins while avoiding excessive damage to normal tissue.ConclusionThis study developed an adaptive radiofrequency ablation algorithm for treating liver cancer, using temperature and impedance as feedback parameters. Preliminary results from finite element analysis and ex-vivo bovine liver experiments suggest that for small tumors with diameters of 10 mm and 20 mm, this algorithm may provide more precise control of the ablation zone, improving efficiency and safety compared to traditional constant power ablation.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"133-147"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm-controlled RF power output for enhanced margin precision in liver cancer radiofrequency ablation.\",\"authors\":\"Dandan Gu, Difang Liu, Haitao Yao, Danni Rui, Yifan Yang, Yu Zhou\",\"doi\":\"10.1177/09592989241304992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundPercutaneous radiofrequency ablation (RFA) is a common method for treating liver cancer. Compared to other treatment modalities, RFA has a higher local tumor recurrence rate due to incomplete ablation. On the other hand, to ensure complete tumor removal, multiple ablations may be necessary, but this can lead to excessive thermal damage. Therefore, improving the precision of the ablation margin control is crucial.ObjectiveThis study aims to investigate an algorithm-controlled ablation mode that can precisely control the tumor treatment margins. This mode uses temperature and impedance as feedback parameters to adaptively adjust the RF power output, ensuring both effective tumor ablation and enhanced safety.MethodsThe study conducted finite element analyses and ex-vivo bovine liver experiments comparing traditional constant power ablation and the algorithm-controlled ablation mode. Simulations primarily analyzed the temperature changes and ablation area in biological tissue, assessing the effectiveness of the two ablation modes. In the ex-vivo bovine liver experiments, temperature and impedance were monitored in real-time to validate the feasibility of the algorithmic ablation mode.ResultsThe findings indicate that the algorithm-controlled ablation mode effectively controls the rise in tissue impedance, preventing carbonization and charring. For ablation diameters of 10 mm and 20 mm, it precisely maintained the boundary temperatures within the range of 50-60°C, ensuring effective damage at the ablation margins while avoiding excessive damage to normal tissue.ConclusionThis study developed an adaptive radiofrequency ablation algorithm for treating liver cancer, using temperature and impedance as feedback parameters. Preliminary results from finite element analysis and ex-vivo bovine liver experiments suggest that for small tumors with diameters of 10 mm and 20 mm, this algorithm may provide more precise control of the ablation zone, improving efficiency and safety compared to traditional constant power ablation.</p>\",\"PeriodicalId\":9109,\"journal\":{\"name\":\"Bio-medical materials and engineering\",\"volume\":\" \",\"pages\":\"133-147\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-medical materials and engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09592989241304992\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09592989241304992","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:经皮射频消融术(RFA)是治疗肝癌的常用方法。与其他治疗方式相比,RFA由于消融不完全,局部肿瘤复发率较高。另一方面,为了确保肿瘤完全切除,可能需要多次消融,但这可能导致过度的热损伤。因此,提高烧蚀余量的控制精度至关重要。目的:探讨一种能够精确控制肿瘤治疗边界的算法控制消融模式。该模式以温度和阻抗作为反馈参数,自适应调节射频功率输出,既保证了有效的肿瘤消融,又增强了安全性。方法:对牛肝脏进行有限元分析和离体实验,比较传统的恒功率消融和算法控制消融模式。模拟主要分析了生物组织的温度变化和消融面积,评估了两种消融模式的有效性。在离体牛肝脏实验中,实时监测温度和阻抗,验证算法消融模式的可行性。结果:算法控制的烧蚀模式有效地控制了组织阻抗的上升,防止了炭化和炭化。对于直径为10mm和20mm的烧蚀,它精确地将边界温度保持在50-60°C范围内,确保烧蚀边缘的有效损伤,同时避免对正常组织的过度损伤。结论:本研究开发了一种以温度和阻抗为反馈参数的肝癌自适应射频消融算法。有限元分析和离体牛肝脏实验的初步结果表明,对于直径为10 mm和20 mm的小肿瘤,与传统的恒功率消融相比,该算法可以更精确地控制消融区域,提高效率和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm-controlled RF power output for enhanced margin precision in liver cancer radiofrequency ablation.

BackgroundPercutaneous radiofrequency ablation (RFA) is a common method for treating liver cancer. Compared to other treatment modalities, RFA has a higher local tumor recurrence rate due to incomplete ablation. On the other hand, to ensure complete tumor removal, multiple ablations may be necessary, but this can lead to excessive thermal damage. Therefore, improving the precision of the ablation margin control is crucial.ObjectiveThis study aims to investigate an algorithm-controlled ablation mode that can precisely control the tumor treatment margins. This mode uses temperature and impedance as feedback parameters to adaptively adjust the RF power output, ensuring both effective tumor ablation and enhanced safety.MethodsThe study conducted finite element analyses and ex-vivo bovine liver experiments comparing traditional constant power ablation and the algorithm-controlled ablation mode. Simulations primarily analyzed the temperature changes and ablation area in biological tissue, assessing the effectiveness of the two ablation modes. In the ex-vivo bovine liver experiments, temperature and impedance were monitored in real-time to validate the feasibility of the algorithmic ablation mode.ResultsThe findings indicate that the algorithm-controlled ablation mode effectively controls the rise in tissue impedance, preventing carbonization and charring. For ablation diameters of 10 mm and 20 mm, it precisely maintained the boundary temperatures within the range of 50-60°C, ensuring effective damage at the ablation margins while avoiding excessive damage to normal tissue.ConclusionThis study developed an adaptive radiofrequency ablation algorithm for treating liver cancer, using temperature and impedance as feedback parameters. Preliminary results from finite element analysis and ex-vivo bovine liver experiments suggest that for small tumors with diameters of 10 mm and 20 mm, this algorithm may provide more precise control of the ablation zone, improving efficiency and safety compared to traditional constant power ablation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bio-medical materials and engineering
Bio-medical materials and engineering 工程技术-材料科学:生物材料
CiteScore
1.80
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信