{"title":"Biomaterials in Relative Devices for Traumatic Cataract: Recent Advances and Future Perspectives.","authors":"Si-Ting Sheng, Xing-Di Wu, Jing-Wei Xu, Zhe Xu, Shuang Ni, Wen Xu, Zhi-Kang Xu","doi":"10.1021/acsbiomaterials.4c02117","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.4c02117","url":null,"abstract":"<p><p>Ocular trauma deprives one of the vision for high-quality life. Management of a traumatic cataract requires extensive surgical experience with a range of biomaterials and biomedical devices including intraocular lenses (IOLs), capsular tension rings (CTRs), prosthetic iris (PSI) implants, bandage contact lenses (BCLs), artificial corneas (ACs), and surgical sutures. Numerous demands, involving biocompatibility, cell toxicity, processability, mechanical strength, toughness/flexibility, transparency/opacity, hydrophilicity/hydrophobicity, and stability/biodegradability, are widely considered for fabricating these biomaterials and devices. Furthermore, a multifunction including drug-release and photothermal therapy is also endearing to those biomaterials in IOLs, CTRs, BCLs, and surgical sutures for anti-inflammational and antibacterial characteristics during traumatic cataract treatments. More recently, 3D printing has been demonstrated to effectively fabricate PSI and ACs with complex shapes to meet the personal requirements of patients. We summarize the main principles and the recent achievements of these advances. We also suggest the potential directions for their future development and discuss the remaining challenges.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143668550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immunomodulatory All-Natural Kelp Decellularized Scaffold Prepared Using Deep Eutectic Solvent with Angiogenic Properties for Accelerating Diabetic Wound Healing.","authors":"Ru-Yi Ren, Tian-Ge Zhao, Lu-Xi Li, Xin-Yi Tang, Jia-Le Li, Fei Jiang, Chen-Guang Liu","doi":"10.1021/acsbiomaterials.4c02420","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.4c02420","url":null,"abstract":"<p><p>Excessive oxidative stress, chronic inflammation, and impaired vascularization are the main barriers to diabetic wound repair. A decellularized extracellular matrix (dECM) with a native ECM structure is a promising biomaterial candidate for diabetic wound healing. However, the traditional decellularization process (reagents) can diminish the structural stability, mechanical properties, and bioactive components of dECM. To address these issues, we developed an intrinsically bioactive kelp decellularized scaffold (Im-Gly2) using natural and gentle deep eutectic solvents (DES) for accelerating diabetic wound healing. Im-Gly2 had a stable porous 3D structure (80.7 μm) and suitable mechanical properties, which could support cell growth, proliferation, and migration. Due to the retention of fucoidan, polyphenols (735.3 μg/g), and flavonoids, Im-Gly2 demonstrated intrinsic antioxidant and immunomodulatory effects. It effectively reduced reactive oxygen species (ROS) production in RAW264.7 macrophages and promoted their differentiation into the M2 phenotype. Notably, Im-Gly2 promoted tube formation through paracrine mechanisms by inducing the expression of transforming and proliferative cytokines from the RAW264.7 macrophage. In vivo, Im-Gly2 accelerated the healing of diabetic wounds by alleviating inflammation, angiogenesis, granulation tissue formation, collagen deposition, and re-epithelialization. Taken together, our study provides a novel strategy for fabricating a bioactive kelp dECM without cross-linking with exogenous substances for accelerating chronic diabetic wound healing.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143661566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D-Printed PEG-PLA/Gelatin Hydrogel: Characterization toward In Vitro Chondrocyte Redifferentiation.","authors":"Pacharapan Sonthithai, Pakkanun Kaewkong, Somruethai Channasanon, Siriporn Tanodekaew","doi":"10.1021/acsbiomaterials.4c02409","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.4c02409","url":null,"abstract":"<p><p>The advancement of 3D printing technology offers a sophisticated solution for tissue engineering and regenerative medicine. Several printable hydrogels have been developed with specific designs for certain tissues. However, there are few effective 3D-printed hydrogels for cartilage tissue engineering due to challenges with the hydrogel printability and the redifferentiation capacity of the articular chondrocytes on the hydrogel. This research study combined a PEG-PLA copolymer with gelatin to develop 3D-printed scaffolds for cartilage regeneration. Different hydrogel samples were prepared and studied regarding the effects of PLA chain length, gelatin content, and cross-linker concentration on the mechanical properties, swelling ability, and degradability of the hydrogels. An increase in the swelling ratio was observed, resulting in diminished compressive properties and accelerated degradation of the hydrogels with increased gelatin or decreased cross-linker and PLA chain length. Porcine articular chondrocytes were seeded onto the hydrogel scaffolds to assess cell adhesion, proliferation, and redifferentiation capability. Hydrogels with high swelling ability promoted the initial adhesion of cells on the scaffold, hence significantly increasing chondrocyte proliferation within 2 weeks of culture. Lowering the compressive modulus by increasing gelatin content improved chondrogenic redifferentiation. Glycosaminoglycan secretion was significantly enhanced when cells grew on hydrogels with greater amounts of gelatin. Furthermore, immunofluorescence staining of the cell-loaded hydrogels showed clusters of cells with a dense accumulation of a type II collagen network, a basis component of the cartilaginous matrix. Neither the PLA chain length nor the cross-linker amount affected chondrogenic function. The present study demonstrates that the PEG-PLA/gelatin hydrogels with increasing amounts of gelatin provide an optimal combination of swelling ratio, compressive modulus, and degradation rate, resulting in an appropriate environment to support the growth and redifferentiation of articular chondrocytes. This 3D-printed PEG-PLA/gelatin hydrogel will be useful for cartilage tissue engineering and possibly contribute to a new approach for cartilage defect treatment.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143661646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patrick Ryan, Hyejin Yoon, Seema Amin, James J Chambers, Jungwoo Lee
{"title":"AI-Assisted Label-Free Monitoring Bone Mineral Metabolism on Demineralized Bone Paper.","authors":"Patrick Ryan, Hyejin Yoon, Seema Amin, James J Chambers, Jungwoo Lee","doi":"10.1021/acsbiomaterials.4c02349","DOIUrl":"10.1021/acsbiomaterials.4c02349","url":null,"abstract":"<p><p>Effective drug development for bone-related diseases, such as osteoporosis and metastasis, is hindered by the lack of physiologically relevant in vitro models. Traditional platforms, including standard tissue culture plastic, fail to replicate the structural and functional complexity of the natural bone extracellular matrix. Recently, osteoid-mimicking demineralized bone paper (DBP), which preserves the intrinsic collagen structure of mature bone and exhibits semitransparency, has demonstrated the ability to reproduce in-vivo-relevant osteogenic processes and mineral metabolism. Here, we present a label-free, longitudinal, and quantitative monitoring of mineralized collagen formation by osteoblasts and subsequent osteoclast-driven mineral resorption on DBP using brightfield microscopy. A Segment.ai machine learning algorithm is applied for time-lapse bright-field image analysis, enabling identification of osteoclast resorption areas and automated quantification of large image datasets over a three-week culture period. This work highlights the potential of DBP as a transformative platform for bone-targeting drug screening and osteoporosis research.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ji-Hye Kang, Young-Jae Cho, Ji-Young Hwang, Sang-Yu Park, Jung-Joo Choi, E Sun Paik, Han-Sem Kim, Jeong-Won Lee, Ueon Sang Shin
{"title":"Temperature-Controlled pNIB/PTX Micelles for Improved Paclitaxel Delivery in Ovarian Cancer Treatment.","authors":"Ji-Hye Kang, Young-Jae Cho, Ji-Young Hwang, Sang-Yu Park, Jung-Joo Choi, E Sun Paik, Han-Sem Kim, Jeong-Won Lee, Ueon Sang Shin","doi":"10.1021/acsbiomaterials.4c02060","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.4c02060","url":null,"abstract":"<p><p>Paclitaxel (PTX) is a widely used anticancer drug for ovarian cancer treatment, but its clinical application is limited by poor water solubility and dose-limiting toxicities. To overcome these challenges, we developed a thermoresponsive, multistep drug delivery system, pNIB/PTX, designed to improve PTX solubility and provide controlled drug release. The pNIB/PTX-3 complex exhibited an initial rapid drug release phase followed by sustained slow release, optimizing both short-term and long-term therapeutic efficacy. At physiological temperatures, the complex demonstrated a precisely controlled drug release mechanism driven by changes in the polymeric micelle structure. <i>In vitro</i> studies showed that pNIB/PTX-3 significantly enhanced therapeutic effects in human ovarian cancer cell lines HeyA8 and SKOV3ip1, compared to PTX alone. In orthotopic ovarian cancer mouse models, a single intraperitoneal injection of pNIB/PTX-3 led to a substantial reduction in tumor size and prolonged survival. This multistep, thermoresponsive delivery system shows strong potential as a promising therapeutic option for dose-dense ovarian cancer treatments, providing improved drug stability, controlled release, and minimized side effects.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing-Yu Lin, Xu Guo, Ming-Hui Sun, Yifeng Zhang, Jun-Xia Lu
{"title":"Diverse Bone Matrix and Mineral Alterations in Osteoporosis with Different Causes: A Solid-State NMR Study.","authors":"Jing-Yu Lin, Xu Guo, Ming-Hui Sun, Yifeng Zhang, Jun-Xia Lu","doi":"10.1021/acsbiomaterials.4c01581","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.4c01581","url":null,"abstract":"<p><p>Osteoporosis (OP), which is a common skeletal disease with different causes, is prevalent in the aging population. Postmenopause women generally suffer from OP with bone loss due to estrogen deficiency. Diabetes is also associated with OP by complex metabolic mechanisms. Bone qualities of OP caused by aging were compared with those of the ovariectomy (OVX) model and the Type 2 diabetic model using Sprague-Dawley (SD) rats in our study. Combining with micro-computed tomography (μ-CT) and solid-state NMR (SSNMR) methods, this research studied bone changes in SD rats from tissue level to the molecular level. The studies revealed bone loss was most significant for cancellous bones but not for cortical bones in OP rats. However, at the molecular level, the content of HAP in cortical bone increased with aging, contributing to the brittleness of the bone. Triglyceride, as a senescence maker of osteocyte in cortical bone, was also identified to be closely associated with OP in aging and OVX rats but not in diabetic rats. This research suggests that changes of bone quality at the molecular level more objectively reflect the bone tissue reconstruction of OP with various causes rather than mere bone loss revealed by μ-CT analysis.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenzhuang Cui, Ying Yue, Yujie Liu, Jun Wang, Zhizhou Yang, Yin Qiang, Chu Gong, Jun-Li Yang
{"title":"Polydopamine Nanoparticle-Loaded Antifreezing and Photothermal Organohydrogel Based on Pullulan for Frostbite Therapy.","authors":"Wenzhuang Cui, Ying Yue, Yujie Liu, Jun Wang, Zhizhou Yang, Yin Qiang, Chu Gong, Jun-Li Yang","doi":"10.1021/acsbiomaterials.5c00040","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.5c00040","url":null,"abstract":"<p><p>Rapid rewarming is the standard and most common strategy for treating frostbite. Due to freezing susceptibility and lack of thermal effects, traditional therapeutic hydrogels are not suitable for being directly applied to frostbite therapy in cold conditions. Contrastively, antifreezing and photothermal hydrogels that are not apt to freeze and capable of rewarming frostbite wounds are deemed to hold great application potential in such therapy. Nevertheless, these hydrogels have rarely been researched. Herein, using glycerol as the cryoprotectant and polydopamine nanoparticles (PDA NPs) as the photothermal agent, a novel pullulan-based antifreezing and photothermal organohydrogel (CPG-PDA organohydrogel) was successfully developed to treat frostbite for the first time. The CPG-PDA organohydrogel formed through 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC·HCl)-mediated esterification reactions was found to possess certain mechanical stability, shear-thinning behaviors (injectability), excellent antifreezing properties, superb <i>in vitro</i> and <i>in vivo</i> photothermal performances, and outstanding cytocompatibility and hemocompatibility. Most noticeably, the photothermal rewarming and coating therapy using the CPG-PDA organohydrogel was observed to significantly accelerate the frostbite healing of rats. The CPG-PDA organohydrogel was opined to be a promising platform for the direct treatment of frostbite in a cold environment and would open a new avenue for the design of therapeutic strategies for frostbite.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Di Ying, Tianshou Zhang, Manlin Qi, Bing Han, Biao Dong
{"title":"Artificial Bone Materials for Infected Bone Defects: Advances in Antimicrobial Functions.","authors":"Di Ying, Tianshou Zhang, Manlin Qi, Bing Han, Biao Dong","doi":"10.1021/acsbiomaterials.4c01940","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.4c01940","url":null,"abstract":"<p><p>Infected bone defects, caused by bacterial contamination following disease or injury, result in the partial loss or destruction of bone tissue. Traditional bone transplantation and other clinical approaches often fail to address the therapeutic complexities of these conditions effectively. In recent years, advanced biomaterials have attracted significant attention for their potential to enhance treatment outcomes. This review explores the pathogenic mechanisms underlying infected bone defects, including biofilm formation and bacterial internalization into bone cells, which allow bacteria to evade the host immune system. To control bacterial infection and facilitate bone repair, we focus on antibacterial materials for bone regeneration. A detailed introduction is given on intrinsically antibacterial materials (e.g., metal alloys, oxide materials, carbon-based materials, hydroxyapatite, chitosan, and Sericin). The antibacterial functionality of bone repair materials can be enhanced through strategies such as the incorporation of antimicrobial ions, surface modification, and the combined use of multiple materials to treat infected bone defects. Key innovations discussed include biomaterials that release therapeutic agents, functional contact biomaterials, and bioresponsive materials, which collectively enhance antibacterial efficacy. Research on the clinical translation of antimicrobial bone materials has also facilitated their practical application in infection prevention and bone healing. In conclusion, advancements in biomaterials provide promising pathways for developing more biocompatible, effective, and personalized therapies to reconstruct infected bone defects.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143629975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inflammatory Microenvironment-Modulated Conductive Hydrogel Promotes Vascularized Bone Regeneration in Infected Bone Defects.","authors":"Qian Yang, Tianli Wu, Xianghao Wu, Mingxing Ren, Fengyi Liu, Sheng Yang","doi":"10.1021/acsbiomaterials.5c00172","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.5c00172","url":null,"abstract":"<p><p>Infected bone defects show a significant reduction in neovascularization during the healing process, primarily due to persistent bacterial infection and immune microenvironmental disorders. Existing treatments are difficult to simultaneously meet the requirements of antibacterial and anti-inflammatory treatments for infected bone defects, which is a key clinical therapeutic challenge that needs to be addressed. In this study, a conductive hydrogel based on copper nanoparticles was developed for controlling bacterial infection and remodeling the immune microenvironment. The hydrogel not only effectively eliminates bacteria that exist in the infected bone defect region but also transmits electrical signals to restore the disordered immune microenvironment. In vitro studies have shown that the hydrogel has excellent biocompatibility and can modulate macrophage polarization by transmitting electrical signals to reduce inflammation and promote neovascularization. In vivo studies further confirmed that the hydrogel scaffold not only rapidly cleared clinical bacterial infections but also significantly induced the formation of vascularized new bone tissue within 4 weeks. This work provides a simple and innovative strategy to fabricate copper-containing conductive hydrogels that show great potential for application in the field of therapeutics for infected bone regeneration.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143612815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}