ACS Biomaterials Science & Engineering最新文献

筛选
英文 中文
3D Nanofiber-Assisted Embedded Extrusion Bioprinting for Oriented Cardiac Tissue Fabrication. 用于定向心脏组织制造的三维纳米纤维辅助嵌入式挤压生物打印技术
IF 5.4 2区 医学
ACS Biomaterials Science & Engineering Pub Date : 2024-11-11 Epub Date: 2024-10-19 DOI: 10.1021/acsbiomaterials.4c01611
Huiquan Wu, Feng Xu, Hang Jin, Mingcheng Xue, Wangzihan Zhang, Jianhui Yang, Junyi Huang, Yuqing Jiang, Bin Qiu, Bin Lin, Qiang Gao, Songyue Chen, Daoheng Sun
{"title":"3D Nanofiber-Assisted Embedded Extrusion Bioprinting for Oriented Cardiac Tissue Fabrication.","authors":"Huiquan Wu, Feng Xu, Hang Jin, Mingcheng Xue, Wangzihan Zhang, Jianhui Yang, Junyi Huang, Yuqing Jiang, Bin Qiu, Bin Lin, Qiang Gao, Songyue Chen, Daoheng Sun","doi":"10.1021/acsbiomaterials.4c01611","DOIUrl":"10.1021/acsbiomaterials.4c01611","url":null,"abstract":"<p><p>Three-dimensional (3D) bioprinting technology stands out as a promising tissue manufacturing process to control the geometry precisely with cell-loaded bioinks. However, the isotropic culture environment within the bioink and the lack of topographical cues impede the formation of oriented cardiac tissue. To overcome this limitation, we present a novel method named 3D nanofiber-assisted embedded bioprinting (3D-NFEP) to fabricate cardiac tissue with an oriented morphology. Aligned 3D nanofiber scaffolds were fabricated by divergence electrospinning, which provided structural support for printing of the low-viscosity bioink and structural induction to cardiomyocytes. Cells adhered to the aligned fibers after hydrogel degradation, and a high degree of cell alignment was observed. This technology was also demonstrated as a feasible solution for multilayer cell printing. Therefore, 3D-NFEP was demonstrated as a promising method for bioprinting oriented cardiac tissue with low-viscosity bioink and is expected to be applied for structured and cardiac tissue engineering.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal Photodynamic Therapy by Inhibiting the Nrf2/ARE Signaling Pathway in Tumors. 通过抑制肿瘤中的 Nrf2/ARE 信号通路实现多模式光动力疗法
IF 5.4 2区 医学
ACS Biomaterials Science & Engineering Pub Date : 2024-11-11 Epub Date: 2024-10-17 DOI: 10.1021/acsbiomaterials.4c01643
Xin Duan, Bingjian Xue, Zimeng Xu, Zixu Niu
{"title":"Multimodal Photodynamic Therapy by Inhibiting the Nrf2/ARE Signaling Pathway in Tumors.","authors":"Xin Duan, Bingjian Xue, Zimeng Xu, Zixu Niu","doi":"10.1021/acsbiomaterials.4c01643","DOIUrl":"10.1021/acsbiomaterials.4c01643","url":null,"abstract":"<p><p>Photodynamic therapy (PDT) has been widely used in the clinical therapy of various tumors, especially superficial tumors. However, the tumor microenvironment presents hypoxia, as well as the inherent antioxidant system (e.g., Nrf2) of tumor cells limits the therapeutic outcomes. Herein, a cascade-responsive \"oxidative stress amplifier\" (named EZ@TD) is designed by encapsulating manganese-doped carbon dots acting as a photosensitizer and catalase (CAT)-like nanozyme within pH-sensitive ZIF-8 and Zn<sup>2+</sup>-activated DNAzyme for relieving hypoxia and efficient Nrf2 gene disruption to enhance PDT. It is demonstrated that EZ@TD synergistically inhibited tumor growth and activated the antitumor immune response by inhibiting the Nrf2/ARE signaling pathway in tumors. We provide a new paradigm for amplifying intracellular oxidative stress by interfering with various signaling pathways.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on Optimization of the Structural Mechanical Properties of Personalized Porous Implant Prosthesis. 个性化多孔植入假体结构力学性能优化研究。
IF 5.4 2区 医学
ACS Biomaterials Science & Engineering Pub Date : 2024-11-11 Epub Date: 2024-10-30 DOI: 10.1021/acsbiomaterials.4c00268
Ye Zhu, Yong Jiang, Qian Cao, Hongchi Liu, Lei Lei, Tianmin Guan
{"title":"Study on Optimization of the Structural Mechanical Properties of Personalized Porous Implant Prosthesis.","authors":"Ye Zhu, Yong Jiang, Qian Cao, Hongchi Liu, Lei Lei, Tianmin Guan","doi":"10.1021/acsbiomaterials.4c00268","DOIUrl":"10.1021/acsbiomaterials.4c00268","url":null,"abstract":"<p><p>Porous implant prostheses can effectively reduce the stress shielding effect. Still, the single elastic modulus prosthesis cannot adapt to the individual skeletal variability, so it is necessary to optimize the structural parameters of the prosthesis to overcome the individual variability. In this regard, this study analyzes the law of structural parameters and mechanical properties after selecting the type of porous structure (diamond structure). It proposes the optimization method of the structural parameters on this basis. First, the functional relationship equations between the unit mass of the porous implant prosthesis, the elastic modulus of the porous implant prosthesis, and the structural parameters were established respectively. Second, the support rod length and radius of the porous implant prosthesis are optimized by a genetic algorithm to form the optimization design method of the porous implant prosthesis. Finally, the feasibility and effectiveness of the optimized design of the porosity implanted prosthesis were verified by animal experiments, and the optimized implanted prosthesis with optimized structural parameters increased bone growth by 20-30% compared to the control group in the animal body. The proposed method provides a theoretical basis and technical support for the rehabilitation of patients and the production of prostheses by physicians.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural Phycocyanin/Paclitaxel Micelle Delivery of Therapeutic P53 to Activate Apoptosis for HER2 or ER Positive Breast Cancer Therapy. 天然植物花青素/紫杉醇胶束释放治疗性 P53,激活 HER2 或 ER 阳性乳腺癌的细胞凋亡。
IF 5.4 2区 医学
ACS Biomaterials Science & Engineering Pub Date : 2024-11-11 Epub Date: 2024-10-11 DOI: 10.1021/acsbiomaterials.4c00756
Ling-Kun Zhang, Yuan Li, Limin Zhai, Yunzhi Tang, Yuxuan Jiao, Yitong Mei, Runcai Yang, Rong You, Liang Yin, He Ni, Jian Ge, Yan-Qing Guan
{"title":"Natural Phycocyanin/Paclitaxel Micelle Delivery of Therapeutic P53 to Activate Apoptosis for HER2 or ER Positive Breast Cancer Therapy.","authors":"Ling-Kun Zhang, Yuan Li, Limin Zhai, Yunzhi Tang, Yuxuan Jiao, Yitong Mei, Runcai Yang, Rong You, Liang Yin, He Ni, Jian Ge, Yan-Qing Guan","doi":"10.1021/acsbiomaterials.4c00756","DOIUrl":"10.1021/acsbiomaterials.4c00756","url":null,"abstract":"<p><p>The <i>P53</i> gene is commonly mutated in breast cancer, protein based the gene as anticancer drugs could provide efficient and stable advantages by restoring the function of the wild-type P53 protein. In this study, we describe the creation and utilization of a micelle composed by natural phycocyanin and paclitaxel and grafting anti-HER2 (PPH), which effectively packages and transports recombinant P53 protein with anti-ER (PE), resulting in a new entity designated as PE@PPH, to address localization obstacles and modify cellular tropism to the cell membrane or nucleus. The results indicate that PE@PPH has strong antitumor properties, even at low doses of PTX both <i>in vitro</i> and <i>in vivo</i>. These findings suggest that PE@PPH could be an enhancing micelle for delivering therapeutic proteins and promoting protein functional recovery, particularly in addressing the challenges posed by tumor heterogeneity in breast cancer.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Europium-Doped 3D Dimensional Porous Calcium Phosphate Scaffolds as a Strategy for Facilitating the Comprehensive Regeneration of Bone Tissue: In Vitro and In Vivo. 掺铕三维多孔磷酸钙支架作为促进骨组织全面再生的策略:体外和体内。
IF 5.4 2区 医学
ACS Biomaterials Science & Engineering Pub Date : 2024-11-11 Epub Date: 2024-10-04 DOI: 10.1021/acsbiomaterials.4c01067
Shaoxiong Feng, Xu Peng, Yuchong Wu, Ningning Lei, Can Cheng, Yiqing Deng, Xixun Yu
{"title":"Europium-Doped 3D Dimensional Porous Calcium Phosphate Scaffolds as a Strategy for Facilitating the Comprehensive Regeneration of Bone Tissue: In Vitro and In Vivo.","authors":"Shaoxiong Feng, Xu Peng, Yuchong Wu, Ningning Lei, Can Cheng, Yiqing Deng, Xixun Yu","doi":"10.1021/acsbiomaterials.4c01067","DOIUrl":"10.1021/acsbiomaterials.4c01067","url":null,"abstract":"<p><p>In response to the challenges faced by clinicians treating bone defects caused by various factors, various bone repair materials have been investigated, but the efficiency of bone healing still needs to be improved due to the acting of scaffolds only in a single stage of bone tissue regeneration. We investigated the potential of a novel 3D scaffold to support different stages of bone tissue regeneration, including initial inflammation, proliferation, and remodeling. Eu (0, 0.5, 2, 3.5, 5, and 6.5%) was added to calcium polyphosphate to obtain 3D porous network-doped Eu calcium polyphosphate (EuCPP) scaffolds with ideal mechanical strength and pore size. Both in vitro and in vivo experiments proved that Eu<sup>3+</sup> released from 5% EuCPP scaffolds could significantly promote the migration and proliferation of bone marrow stromal cells which effectively promote angiogenesis; 5% EuCPP could significantly upregulate the ratio of OPG/RANKL in MC3T3-E1 and promote the secretion of osteogenic-related growth factors (ALP and OPN) from MC3T3-E1, indicating the potential of the scaffold to inhibit bone resorption and promote bone formation. In conclusion, 5% EuCPP possesses the biological properties of pro-angiogenesis, anti-inflammation, pro-osteogenesis, and inhibiting bone resorption, which may provide a sustained positive effect throughout the process of bone tissue repair.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetically Driven Hydrogel Surfaces for Modulating Macrophage Behavior. 用于调节巨噬细胞行为的磁驱动水凝胶表面
IF 5.4 2区 医学
ACS Biomaterials Science & Engineering Pub Date : 2024-11-11 Epub Date: 2024-10-09 DOI: 10.1021/acsbiomaterials.4c01624
Lanhui Li, Els Alsema, Nick R M Beijer, Burcu Gumuscu
{"title":"Magnetically Driven Hydrogel Surfaces for Modulating Macrophage Behavior.","authors":"Lanhui Li, Els Alsema, Nick R M Beijer, Burcu Gumuscu","doi":"10.1021/acsbiomaterials.4c01624","DOIUrl":"10.1021/acsbiomaterials.4c01624","url":null,"abstract":"<p><p>During the host response toward implanted biomaterials, macrophages can shift phenotypes rapidly upon changes in their microenvironment within the host tissue. Exploration of this phenomenon can benefit significantly from the development of adequate tools. Creating cell microenvironment alterations on classical hydrogel substrates presents challenges, particularly when integrating them with cell cultivation and monitoring processes. However, having the capability to dynamically manipulate the cell microenvironment on biomaterial surfaces holds significant potential. We introduce magnetically actuated hydrogels (<sub>Mad</sub>Surface) tailored to induce reversible stiffness changes on polyacrylamide hydrogel substrates with embedded magnetic microparticles in a time-controllable manner. Our investigation focused on exploring the potential of magnetic fields and <sub>Mad</sub>Surfaces in dynamically modulating macrophage behavior in a programmable manner. We achieved a consistent modulation by subjecting the <sub>Mad</sub>Surface to a pulsed magnetic field with a frequency of 0.1 Hz and a magnetic field flux density of 50 mT and analyzed exposed cells using flow cytometry and ELISA. At the single-cell level, we identified a subpopulation for which the dynamic stiffness conditions in conjunction with the pulsed magnetic field increased the expression of CD206 in M1-activated THP-1 cells, indicating a consistent shift toward the M2 anti-inflammatory phenotype on <sub>Mad</sub>Surface. At the population level, this effect was mostly hindered in the culture period utilized in this work. The <sub>Mad</sub>Surface approach advances our understanding of the interplay between magnetic field, cell microenvironment alterations, and macrophage behavior.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D-Printed Shape Memory and Piezoelectric Bifunctional Thermoplastic Polyurethane/Polyvinylidene Fluoride Porous Composite Scaffold for Bone Regeneration. 用于骨再生的三维打印形状记忆和压电双功能热塑性聚氨酯/聚偏氟乙烯多孔复合支架。
IF 5.4 2区 医学
ACS Biomaterials Science & Engineering Pub Date : 2024-11-11 Epub Date: 2024-10-17 DOI: 10.1021/acsbiomaterials.4c01221
Dongying Li, Peng Chen, Haocheng Du, Zonghan Li, Mengqi Li, Yong Xu
{"title":"3D-Printed Shape Memory and Piezoelectric Bifunctional Thermoplastic Polyurethane/Polyvinylidene Fluoride Porous Composite Scaffold for Bone Regeneration.","authors":"Dongying Li, Peng Chen, Haocheng Du, Zonghan Li, Mengqi Li, Yong Xu","doi":"10.1021/acsbiomaterials.4c01221","DOIUrl":"10.1021/acsbiomaterials.4c01221","url":null,"abstract":"<p><p>Physical stimulations such as mechanical and electric stimulation can continuously work on bone defect locations to maintain and enhance cell activity, and it has become a hotspot for research in the field of bone repair. Herein, bifunctional porous composite scaffolds with shape memory and piezoelectric functions were fabricated using thermoplastic polyurethane (TPU) and poly(vinylidene fluoride) through triply periodic minimal surfaces design and selective laser sintering technology. Thereinto, the shape fixity ratio and recovery ratio of the composite scaffold reached 98.6% and 81.2%, respectively, showing excellent shape memory functions. More importantly, its piezoelectric coefficient (d33 = 2.47 pC/N) is close to the piezoelectric constant of bone tissue (d33 = 0.7-2.3 pC/N), and the voltage released during the compression process can reach 0.5 V. Furthermore, cyclic compression experiments showed that the strength of composite scaffold was up to 8.3 times compared with the TPU scaffold. Besides, the composite scaffold showed excellent cytocompatibility. In conclusion, the composite scaffold is expected to continuously generate mechanical and electric stimulation due to shape memory and piezoelectric function, respectively, which provide an effective strategy for bone repair.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA Coating Promotes Peri-Implant Osseointegration. RNA 涂层促进种植体周围骨结合
IF 5.4 2区 医学
ACS Biomaterials Science & Engineering Pub Date : 2024-11-11 Epub Date: 2024-06-29 DOI: 10.1021/acsbiomaterials.4c00133
Xiao Zhang, Yicheng Chen, Shanluo Zhou, Ya Liu, Simin Zhu, Xuelian Jia, Zihan Lu, Yufan Zhang, Wenhui Zhang, Zhou Ye, Bolei Cai, Liang Kong, Fuwei Liu
{"title":"RNA Coating Promotes Peri-Implant Osseointegration.","authors":"Xiao Zhang, Yicheng Chen, Shanluo Zhou, Ya Liu, Simin Zhu, Xuelian Jia, Zihan Lu, Yufan Zhang, Wenhui Zhang, Zhou Ye, Bolei Cai, Liang Kong, Fuwei Liu","doi":"10.1021/acsbiomaterials.4c00133","DOIUrl":"10.1021/acsbiomaterials.4c00133","url":null,"abstract":"<p><p>In addition to transmitting and carrying genetic information, RNA plays an important abiotic role in the world of nanomaterials. RNA is a natural polyanionic biomacromolecule, and its ability to promote osteogenesis by binding with other inorganic materials as an osteogenic induction agent was discovered only recently. However, whether it can promote osseointegration on implants has not been reported. Here, we investigated the effect of the RNA-containing coating materials on peri-implant osseointegration. Total RNA extracted from rat muscle tissue was used as an osteogenic induction agent, and hyaluronic acid (HA) was used to maintain its negative charge. In simulated body fluids (SBF), in vitro studies demonstrated that the resulting material encouraged calcium salt deposition. Cytological experiments showed that the RNA-containing coating induced greater cell adhesion and osteogenic differentiation in comparison to the control. The results of animal experiments showed that the RNA-containing coating had osteoinductive and bone conduction activities, which are beneficial for bone formation and osseointegration. Therefore, the RNA-containing coatings are useful for the surface modification of titanium implants to promote osseointegration.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141464226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An In Vitro Macrophage Response Study of Silk Fibroin and Silk Fibroin/Nano-Hydroxyapatite Scaffolds for Tissue Regeneration Application. 用于组织再生的蚕丝纤维素和蚕丝纤维素/纳米羟基磷灰石支架的体外巨噬细胞反应研究
IF 5.4 2区 医学
ACS Biomaterials Science & Engineering Pub Date : 2024-11-11 Epub Date: 2024-10-09 DOI: 10.1021/acsbiomaterials.4c00976
Kallista Wong, Xuan Hao Tan, Jun Li, James Hoi Po Hui, James Cho Hong Goh
{"title":"An In Vitro Macrophage Response Study of Silk Fibroin and Silk Fibroin/Nano-Hydroxyapatite Scaffolds for Tissue Regeneration Application.","authors":"Kallista Wong, Xuan Hao Tan, Jun Li, James Hoi Po Hui, James Cho Hong Goh","doi":"10.1021/acsbiomaterials.4c00976","DOIUrl":"10.1021/acsbiomaterials.4c00976","url":null,"abstract":"<p><p>In recent years, silk fibroin (SF) has been incorporated with low crystallinity nanohydroxyapatite (nHA) as a scaffold for various tissue regeneration applications due to the mechanical strength of SF and osteoconductive properties of nHA. However, currently, there is a lack of understanding of the immune response toward the degradation products of SF with nHA composite after implantation. It is known that particulate fragments from the degradation of a biomaterial can trigger an immune response. As the scaffold is made of degradable materials, the degradation products may contribute to the inflammation. Therefore, in this study, the effects of the enzymatic degradation of the SF/nHA scaffold on macrophage response were investigated in comparison to the control SF scaffold. Since the degradation products of a scaffold can influence macrophage polarization, it can be hypothesized that as the SF and SF/nHA scaffolds were degraded in vitro using protease XIV solution, the degradation products can contribute to the polarization of THP-1-derived macrophages from pro-inflammatory M1 to anti-inflammatory M2 phenotype. The results demonstrated that the initial (day 1) degradation products of the SF/nHA scaffold elicited a pro-inflammatory response, while the latter (day 24) degradation products of the SF/nHA scaffold elicited an anti-inflammatory response. Moreover, the degradation products from the SF scaffold elicited a higher anti-inflammatory response due to the faster degradation of the SF scaffold and a higher amino acid concentration in the degradation solution. Hence, this paper can help elucidate the contributory effects of the degradation products of SF and SF/nHA scaffolds on macrophage response and provide greater insights into designing silk-based biomaterials with tunable degradation rates that can modulate macrophage response for future tissue regeneration applications.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fresh Human Umbilical Cord Arteries as a Potential Source for Small-Diameter Vascular Grafts. 将新鲜人类脐带动脉作为小直径血管移植物的潜在来源。
IF 5.4 2区 医学
ACS Biomaterials Science & Engineering Pub Date : 2024-11-11 Epub Date: 2024-10-08 DOI: 10.1021/acsbiomaterials.4c01414
Trung-Chuc Nguyen, Toan Linh Nguyen, Xuan-Hung Nguyen, Khac-Cuong Bui, Tuan-Anh Pham, Linh Dieu Do, Nghia Trung Tran, Thanh-Liem Nguyen, Nhung Thi My Hoang, Xuan-Hai Do
{"title":"Fresh Human Umbilical Cord Arteries as a Potential Source for Small-Diameter Vascular Grafts.","authors":"Trung-Chuc Nguyen, Toan Linh Nguyen, Xuan-Hung Nguyen, Khac-Cuong Bui, Tuan-Anh Pham, Linh Dieu Do, Nghia Trung Tran, Thanh-Liem Nguyen, Nhung Thi My Hoang, Xuan-Hai Do","doi":"10.1021/acsbiomaterials.4c01414","DOIUrl":"10.1021/acsbiomaterials.4c01414","url":null,"abstract":"<p><p>The demand for small-diameter vascular grafts has been globally increased but still lacks optimal solutions in this category. This study evaluated the feasibility of utilizing human pretreated fresh and nondecellularized umbilical cord arteries (hUCAs) as vascular grafts without needing any immunosuppression process. A mixed lymphocyte reaction assay revealed that hUCAs did not induce lymphocyte proliferation or cytokine production. To assess the in vivo inflammatory response, hUCAs were buried in fatty tissue under the skin of the abdominal wall in the left and right iliac fossas of rats. The average sizes of the implanted hUCAs remained consistent at 30 days post implantation. To evaluate xenogeneic transplantation, hUCAs were grafted to the abdominal aorta below the kidney of Wister rats. Remarkably, all rats exhibited positive revascularization and perfusion, maintaining blood pressure values of around 110/70 mmHg. Doppler ultrasound consistently indicated good circulation, with the three separate echogenic layers corresponding to the three arterial wall layers throughout the assessment period. Grafted rats exhibited normal motor behavior, accompanied by positive responses to thermal and pain stimulation. Blood biochemical values and whole blood cell counts showed no significant differences between pre and post-transplantation. Histological analysis of the grafts revealed no calcification or thrombosis, and a mild chronic inflammatory response was presented. In conclusion, hUCAs maintained their structural and functional properties after transplantation in rats without immunosuppression. This highlights their potential as a source for allogeneic, readily accessible, small-diameter vascular grafts.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信