生物医学用近红外光驱动纳米马达的最新进展。

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yina Su, Guizhen Xu, Wei Wu, Xiao Li, Simin Chen, Shanni Hong, Xiahui Lin
{"title":"生物医学用近红外光驱动纳米马达的最新进展。","authors":"Yina Su, Guizhen Xu, Wei Wu, Xiao Li, Simin Chen, Shanni Hong, Xiahui Lin","doi":"10.1021/acsbiomaterials.5c00586","DOIUrl":null,"url":null,"abstract":"<p><p>Nanomotors (NMs) achieve autonomous motion by converting external energy into mechanical work, enabling them to perform complex tasks on demand. Among the various propulsion mechanisms for NMs, near-infrared (NIR) light propulsion has attracted significant attention due to its excellent biocompatibility, deep tissue penetration, minimal damage to normal tissues, precise on/off control, and rapid response. Furthermore, NIR propulsion can be integrated with other propulsion mechanisms to overcome the limitations of single-mode systems. In this review, we explore the design of NIR light-propelled NMs, categorizing their mechanisms into three types: (1) photothermal propulsion, (2) NIR light-triggered bubble propulsion, and (3) photothermal-bubble dual-driven propulsion systems. We also highlight the applications of NIR light-propelled NMs in treating diseases such as tumors, thrombosis, and bacterial infections. In addition, the challenges and future prospects for the development of NIR light-propelled NMs are also discussed.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advancements in Near-Infrared Light-Propelled Nanomotors for Biomedical Applications.\",\"authors\":\"Yina Su, Guizhen Xu, Wei Wu, Xiao Li, Simin Chen, Shanni Hong, Xiahui Lin\",\"doi\":\"10.1021/acsbiomaterials.5c00586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanomotors (NMs) achieve autonomous motion by converting external energy into mechanical work, enabling them to perform complex tasks on demand. Among the various propulsion mechanisms for NMs, near-infrared (NIR) light propulsion has attracted significant attention due to its excellent biocompatibility, deep tissue penetration, minimal damage to normal tissues, precise on/off control, and rapid response. Furthermore, NIR propulsion can be integrated with other propulsion mechanisms to overcome the limitations of single-mode systems. In this review, we explore the design of NIR light-propelled NMs, categorizing their mechanisms into three types: (1) photothermal propulsion, (2) NIR light-triggered bubble propulsion, and (3) photothermal-bubble dual-driven propulsion systems. We also highlight the applications of NIR light-propelled NMs in treating diseases such as tumors, thrombosis, and bacterial infections. In addition, the challenges and future prospects for the development of NIR light-propelled NMs are also discussed.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.5c00586\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00586","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

纳米马达(NMs)通过将外部能量转化为机械功来实现自主运动,使它们能够按需执行复杂的任务。在纳米粒子的多种推进机制中,近红外(NIR)光推进以其优异的生物相容性、深入组织、对正常组织的损伤小、精确的开/关控制和快速的反应等优点而备受关注。此外,近红外推进可以与其他推进机构集成,以克服单模系统的局限性。在本文中,我们探讨了近红外光推进纳米粒子的设计,并将其机制分为三种类型:(1)光热推进,(2)近红外光触发气泡推进,(3)光热-气泡双驱动推进系统。我们还重点介绍了近红外光驱动的纳米粒子在治疗肿瘤、血栓形成和细菌感染等疾病方面的应用。此外,还讨论了近红外光推进纳米材料发展面临的挑战和未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Advancements in Near-Infrared Light-Propelled Nanomotors for Biomedical Applications.

Nanomotors (NMs) achieve autonomous motion by converting external energy into mechanical work, enabling them to perform complex tasks on demand. Among the various propulsion mechanisms for NMs, near-infrared (NIR) light propulsion has attracted significant attention due to its excellent biocompatibility, deep tissue penetration, minimal damage to normal tissues, precise on/off control, and rapid response. Furthermore, NIR propulsion can be integrated with other propulsion mechanisms to overcome the limitations of single-mode systems. In this review, we explore the design of NIR light-propelled NMs, categorizing their mechanisms into three types: (1) photothermal propulsion, (2) NIR light-triggered bubble propulsion, and (3) photothermal-bubble dual-driven propulsion systems. We also highlight the applications of NIR light-propelled NMs in treating diseases such as tumors, thrombosis, and bacterial infections. In addition, the challenges and future prospects for the development of NIR light-propelled NMs are also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信