Greener Decellularization of Porcine Auricular Cartilage Using Supercritical Technology and Different Pretreatments for Application in Tissue Engineering.
Victor M de Souza, Carolina C Zuliani, Jéssica B da Cunha, Juliana Carron, Carmen S P Lima, Ibsen B Coimbra, Paulo T V Rosa, Ângela M Moraes
{"title":"Greener Decellularization of Porcine Auricular Cartilage Using Supercritical Technology and Different Pretreatments for Application in Tissue Engineering.","authors":"Victor M de Souza, Carolina C Zuliani, Jéssica B da Cunha, Juliana Carron, Carmen S P Lima, Ibsen B Coimbra, Paulo T V Rosa, Ângela M Moraes","doi":"10.1021/acsbiomaterials.4c02155","DOIUrl":null,"url":null,"abstract":"<p><p>Scaffolds for tissue engineering can be obtained from synthetic or natural materials, with decellularized tissues being particularly attractive. Among these, porcine auricular cartilage is of special interest because of its availability, similarity to the human extracellular matrix (ECM), and cost-effectiveness. Decellularization of animal tissues yields extracellular matrices (ECM) rich in collagen, elastin, and glycosaminoglycans (GAGs), which are essential for providing mechanical support and creating a favorable environment for cell adhesion and tissue development. Traditional decellularization methods that rely on surfactants, such as sodium dodecyl sulfate (SDS), can have drawbacks, including protein denaturation, cytotoxic effects, the need for extensive washing, and the production of hazardous effluents. Alternative approaches involving the use of supercritical CO<sub>2</sub> (scCO<sub>2</sub>) combined with cosolvents and preceded by specific tissue pretreatments have the potential to minimize ECM degradation, reduce effluent production, and allow for the recycling of CO<sub>2</sub>, thus lowering the overall carbon footprint. In this study, the decellularization of porcine auricular cartilage was investigated using osmotic shock and freeze-thaw pretreatments, followed by exposure to scCO<sub>2</sub> combined with either butanol or ethanol. For comparison, traditional SDS decellularization was also performed. The decellularized tissues were assessed based on ECM structure, cell removal efficiency, and mechanical properties through histological analysis, DNA quantification, and mechanical compression testing. The results showed that none of the treatments fully decellularized the cartilage, likely due to the tissue's high GAG content. However, the combination of freeze-thaw cycles followed by scCO<sub>2</sub> treatment with butanol yielded the most favorable results, preserving the mechanical properties of the cartilage while minimizing ECM degradation.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02155","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Scaffolds for tissue engineering can be obtained from synthetic or natural materials, with decellularized tissues being particularly attractive. Among these, porcine auricular cartilage is of special interest because of its availability, similarity to the human extracellular matrix (ECM), and cost-effectiveness. Decellularization of animal tissues yields extracellular matrices (ECM) rich in collagen, elastin, and glycosaminoglycans (GAGs), which are essential for providing mechanical support and creating a favorable environment for cell adhesion and tissue development. Traditional decellularization methods that rely on surfactants, such as sodium dodecyl sulfate (SDS), can have drawbacks, including protein denaturation, cytotoxic effects, the need for extensive washing, and the production of hazardous effluents. Alternative approaches involving the use of supercritical CO2 (scCO2) combined with cosolvents and preceded by specific tissue pretreatments have the potential to minimize ECM degradation, reduce effluent production, and allow for the recycling of CO2, thus lowering the overall carbon footprint. In this study, the decellularization of porcine auricular cartilage was investigated using osmotic shock and freeze-thaw pretreatments, followed by exposure to scCO2 combined with either butanol or ethanol. For comparison, traditional SDS decellularization was also performed. The decellularized tissues were assessed based on ECM structure, cell removal efficiency, and mechanical properties through histological analysis, DNA quantification, and mechanical compression testing. The results showed that none of the treatments fully decellularized the cartilage, likely due to the tissue's high GAG content. However, the combination of freeze-thaw cycles followed by scCO2 treatment with butanol yielded the most favorable results, preserving the mechanical properties of the cartilage while minimizing ECM degradation.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture