Gabriela Gomes da Silva, Daniel Pereira Sacomani, Bruna Gregatti de Carvalho, Marimélia Aparecida Porcionatto, Angelo Gobbi, Renato Sousa Lima, Lucimara Gaziola de la Torre
{"title":"Microfluidic Systems to Mimic the Blood-Brain Barrier: from Market to Engineering Challenges and Perspectives.","authors":"Gabriela Gomes da Silva, Daniel Pereira Sacomani, Bruna Gregatti de Carvalho, Marimélia Aparecida Porcionatto, Angelo Gobbi, Renato Sousa Lima, Lucimara Gaziola de la Torre","doi":"10.1021/acsbiomaterials.4c02221","DOIUrl":null,"url":null,"abstract":"<p><p>Studying and understanding complex biological systems is a challenge that requires technologies that go beyond traditional cell culture methods. Among the new technologies that have been developed in recent times, blood-brain barrier-on-a-chip (BBB-on-a-chip) models are becoming popular. Due to their ability to integrate fluid flow, which is absent in traditional static models, it has been possible to create a cellular microenvironment that mimics blood vessels and blood flow. In addition, the possibility of coculturing different cell types in multicellular models allows the observation of their interactions and increases interest in these systems. With different possibilities in terms of prototyping techniques (e.g., laminate manufacturing, molding, and 3D impression), chip designs (e.g., planar and cylindrical configurations), and materials (e.g., thermoplastics, elastomers, and hydrogels), the number of publications in the BBB research field has significantly increased in the last five years. In parallel, the emergence and consolidation of several companies have made the commercialization and application of these chips possible, mainly in the pharmaceutical area, which is not yet integrated into the drug development pipeline. In this context, the present review describes the intersection between technique, market, and applications that mimic the BBB. We showed organ-on-a-chip (OoC) market growth and the collaborative research between the main OoC supplier companies and industrial collaborators. Also, we present an overview of the primary fabrication methods used in constructing the OoC systems and their application in developing the BBB models. In addition, we discussed the BBB-on-a-chip designs developed in the last five years, including their engineering aspects (such as materials, dimensions, and configuration), characterization, and challenges in mimicking the BBB.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02221","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Studying and understanding complex biological systems is a challenge that requires technologies that go beyond traditional cell culture methods. Among the new technologies that have been developed in recent times, blood-brain barrier-on-a-chip (BBB-on-a-chip) models are becoming popular. Due to their ability to integrate fluid flow, which is absent in traditional static models, it has been possible to create a cellular microenvironment that mimics blood vessels and blood flow. In addition, the possibility of coculturing different cell types in multicellular models allows the observation of their interactions and increases interest in these systems. With different possibilities in terms of prototyping techniques (e.g., laminate manufacturing, molding, and 3D impression), chip designs (e.g., planar and cylindrical configurations), and materials (e.g., thermoplastics, elastomers, and hydrogels), the number of publications in the BBB research field has significantly increased in the last five years. In parallel, the emergence and consolidation of several companies have made the commercialization and application of these chips possible, mainly in the pharmaceutical area, which is not yet integrated into the drug development pipeline. In this context, the present review describes the intersection between technique, market, and applications that mimic the BBB. We showed organ-on-a-chip (OoC) market growth and the collaborative research between the main OoC supplier companies and industrial collaborators. Also, we present an overview of the primary fabrication methods used in constructing the OoC systems and their application in developing the BBB models. In addition, we discussed the BBB-on-a-chip designs developed in the last five years, including their engineering aspects (such as materials, dimensions, and configuration), characterization, and challenges in mimicking the BBB.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture