BiofoulingPub Date : 2024-08-01Epub Date: 2024-07-10DOI: 10.1080/08927014.2024.2373870
Thomas Fruleux, Pierre Sauleau, Flore Caudal, Marie Champion, Laurianne Chauvin, Mickaël Castro, Antoine Le Duigou
{"title":"Marine biofilm formation on flax fibre reinforced biocomposites.","authors":"Thomas Fruleux, Pierre Sauleau, Flore Caudal, Marie Champion, Laurianne Chauvin, Mickaël Castro, Antoine Le Duigou","doi":"10.1080/08927014.2024.2373870","DOIUrl":"10.1080/08927014.2024.2373870","url":null,"abstract":"<p><p>Artificial reefs represent useful tools to revitalize coastal and ocean ecosystems. Their formulation determines the biofilm formation which is the prerequisite for the colonization process by marine micro- and macroorganisms. In comparison with concrete, biobased polymers offer improved characteristics, including architecture, formulation, rugosity and recycling. This article aims to explore a new scale of artificial reef made of biocomposites reinforced with a high flax fibre (<i>Linum utilatissimum</i>) content (30%). Cellular adhesion and resulting biofilm formation were assessed using two marine microorganisms: <i>Pseudoalteromonas</i> sp. 3J6 and <i>Cylindrotheca closterium</i>. The influence of flax fibre leachates and plastic monomers on the growth of those marine microorganisms were also evaluated. Results indicated that the introduction of flax fibres inside the polymer matrix modified its physicochemical properties thus modulating adhesion and biofilm formation depending on the microorganism. This study gives insights for further developments of novel functionalized artificial reefs made of biocomposites.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improvement of a low-cost protocol for a simultaneous comparative evaluation of hydrolytic activity between sessile and planktonic cells: <i>Candida albicans</i> as a study model.","authors":"Wafaa Kendil, Fayçal Dergal, Ikram Tefiani, Yassine Moustafa Mahdad, Zakaria Benladghem, Chewki Ziani-Cherif, Sidi Mohammed Lahbib Seddiki","doi":"10.1080/08927014.2024.2376637","DOIUrl":"10.1080/08927014.2024.2376637","url":null,"abstract":"<p><p><i>Candida albicans</i> is often implicated in nosocomial infections with fatal consequences. Its virulence is contributed to hydrolytic enzymes and biofilm formation. Previous research focused on studying these virulence factors individually. Therefore, this study aimed to investigate the impact of biofilm formation on the hydrolytic activity using an adapted low-cost method. Eleven strains of <i>C. albicans</i> were used. The biofilms were formed on pre-treated silicone discs using 24-well plates and then deposited on the appropriate agar to test each enzyme, while the planktonic cells were conventionally seeded. Biofilms were analysed using Raman spectroscopy, fluorescent and scanning electron microscopy. The adapted method provided an evaluation of hydrolytic enzymes activity in <i>C. albicans</i> biofilm and showed that sessile cells had a higher phospholipase and proteinase activities compared with planktonic cells. These findings were supported by spectroscopic and microscopic analyses, which provided valuable insights into the virulence mechanisms of <i>C. albicans</i> during biofilm formation.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofoulingPub Date : 2024-08-01Epub Date: 2024-07-02DOI: 10.1080/08927014.2024.2367491
Riddhiman Medhi, Alexandra D Handlin, Amanda K Leonardi, Giancarlo Galli, Elisa Guazzelli, John A Finlay, Anthony S Clare, Matteo Oliva, Carlo Pretti, Elisa Martinelli, Christopher K Ober
{"title":"Interrupting marine fouling with active buffered coatings.","authors":"Riddhiman Medhi, Alexandra D Handlin, Amanda K Leonardi, Giancarlo Galli, Elisa Guazzelli, John A Finlay, Anthony S Clare, Matteo Oliva, Carlo Pretti, Elisa Martinelli, Christopher K Ober","doi":"10.1080/08927014.2024.2367491","DOIUrl":"10.1080/08927014.2024.2367491","url":null,"abstract":"<p><p>Biofouling on marine surfaces causes immense material and financial harm for maritime vessels and related marine industries. Previous reports have shown the effectiveness of amphiphilic coating systems based on poly(dimethylsiloxane) (PDMS) against such marine foulers. Recent studies on biofouling mechanisms have also demonstrated acidic microenvironments in biofilms and stronger adhesion at low-pH conditions. This report presents the design and utilization of amphiphilic polymer coatings with buffer functionalities as an active disruptor against four different marine foulers. Specifically, this study explores both neutral and zwitterionic buffer systems for marine coatings, offering insights into coating design. Overall, these buffer systems were found to improve foulant removal, and unexpectedly were the most effective against the diatom <i>Navicula incerta</i>.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofoulingPub Date : 2024-08-01Epub Date: 2024-06-30DOI: 10.1080/08927014.2024.2371817
Maíra Terra Garcia, Andressa Mayumi Namba, Paulo Henrique Fonseca do Carmo, Lara Luise Castro Pedroso, Patrícia Michele Nagai de Lima, Juliana Caparroz Gonçale, Juliana Campos Junqueira
{"title":"Antimicrobial effects of surface pre-reacted glass-ionomer (S-PRG) eluate against oral microcosm biofilm.","authors":"Maíra Terra Garcia, Andressa Mayumi Namba, Paulo Henrique Fonseca do Carmo, Lara Luise Castro Pedroso, Patrícia Michele Nagai de Lima, Juliana Caparroz Gonçale, Juliana Campos Junqueira","doi":"10.1080/08927014.2024.2371817","DOIUrl":"10.1080/08927014.2024.2371817","url":null,"abstract":"<p><p>This study investigated the antimicrobial activity of surface pre-reacted glass ionomer eluate (S-PRG) against oral microcosm biofilms collected from the oral cavity of patients. Dental biofilm samples were collected from three volunteers to form microcosm biofilms <i>in vitro</i>. Initially, screening tests were carried out to determine the biofilm treatment conditions with S-PRG eluate. The effects of a daily treatment for 5 min using three microcosm biofilms from different patients was then evaluated. For this, biofilms were formed on tooth enamel specimens for 120 h. Biofilms treated with 100% S-PRG for 5 min per day for 5 days showed a reduction in the number of total microorganisms, streptococci and <i>mutans</i> streptococci. SEM images confirmed a reduction in the biofilm after treatment. Furthermore, S-PRG also reduced lactic acid production. It was concluded that S-PRG eluate reduced the microbial load and lactic acid production in oral microcosm biofilms, reinforcing its promising use as a mouthwash agent.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofoulingPub Date : 2024-05-02DOI: 10.1080/08927014.2024.2343839
Ditte A. Søborg, Bo Højris, Kurt Brinkmann, Michael R. Pedersen, Torben L. Skovhus
{"title":"Characterizing the development of biofilm in polyethylene pipes in the non-chlorinated Danish drinking-water distribution system","authors":"Ditte A. Søborg, Bo Højris, Kurt Brinkmann, Michael R. Pedersen, Torben L. Skovhus","doi":"10.1080/08927014.2024.2343839","DOIUrl":"https://doi.org/10.1080/08927014.2024.2343839","url":null,"abstract":"In newly commissioned drinking-water polyethylene (PE) pipes, biofilm develops on the inner pipe surface. The microbial community composition from colonization to the establishment of mature biofil...","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofoulingPub Date : 2024-05-01Epub Date: 2024-06-10DOI: 10.1080/08927014.2024.2363241
Sergio García, David Boullosa-Falces, David S Sanz, Alfredo Trueba, Miguel Angel Gomez-Solaetxe
{"title":"Artificial-intelligence-model to optimize biocide dosing in seawater-cooled industrial process applications considering environmental, technical, energetic, and economic aspects.","authors":"Sergio García, David Boullosa-Falces, David S Sanz, Alfredo Trueba, Miguel Angel Gomez-Solaetxe","doi":"10.1080/08927014.2024.2363241","DOIUrl":"10.1080/08927014.2024.2363241","url":null,"abstract":"<p><p>This research introduces an Artificial Intelligence (AI) based model designed to concurrently optimize energy supply management, biocide dosing, and maintenance scheduling for heat exchangers. This optimization considers energetic, technical, economic, and environmental considerations. The impact of biofilm on heat exchangers is assessed, revealing a 41% reduction in thermal efficiency and a 113% increase in flow frictional resistance of the fluid compared to the initial state. Consequently, the pump's power consumption, required to maintain hydraulic conditions, rises by 9%. The newly developed AI model detects the point at which the heat exchanger's performance begins to decline due to accumulating dirt, marking day 44 of experimentation as the threshold to commence the antifouling biocide dosing. Leveraging this AI model to monitor heat exchanger efficiency represents an innovative approach to optimizing antifouling biocide dosing and reduce the environmental impact stemming from industrial plants.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofoulingPub Date : 2024-05-01Epub Date: 2024-06-05DOI: 10.1080/08927014.2024.2357308
Huihai Wan, Guoqing Wang, Tiansui Zhang, Zixuan Xu, Hongfang Liu
{"title":"Bacterial adhesion and corrosion behavior of different pure metals induced by sulfate reducing bacteria.","authors":"Huihai Wan, Guoqing Wang, Tiansui Zhang, Zixuan Xu, Hongfang Liu","doi":"10.1080/08927014.2024.2357308","DOIUrl":"10.1080/08927014.2024.2357308","url":null,"abstract":"<p><p>The corrosion behaviors of four pure metals (Fe, Ni, Mo and Cr) in the presence of sulfate reducing bacteria (SRB) were investigated in enriched artificial seawater (EASW) after 14-day incubation. Metal Fe and metal Ni experienced weight losses of 1.96 mg cm<sup>-2</sup> and 1.26 mg cm<sup>-2</sup>, respectively. In contrast, metal Mo and metal Cr exhibited minimal weight losses, with values of only 0.05 mg cm<sup>-2</sup> and 0.03 mg cm<sup>-2</sup>, respectively. In comparison to Mo (2.2 × 10<sup>6</sup> cells cm<sup>-2</sup>) or Cr (1.4 × 10<sup>6</sup> cells cm<sup>-2</sup>) surface, the sessile cell counts on Fe (4.0 × 10<sup>7</sup> cells cm<sup>-2</sup>) or Ni (3.1 × 10<sup>7</sup> cells cm<sup>-2</sup>) surface was higher.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141247270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofoulingPub Date : 2024-05-01Epub Date: 2024-06-05DOI: 10.1080/08927014.2024.2358913
Sadaf Torabi, Sayed Ali Hassanzadeh-Tabrizi
{"title":"Effective antibacterial agents in modern wound dressings: a review.","authors":"Sadaf Torabi, Sayed Ali Hassanzadeh-Tabrizi","doi":"10.1080/08927014.2024.2358913","DOIUrl":"10.1080/08927014.2024.2358913","url":null,"abstract":"<p><p>Wound infections are a significant concern in healthcare, leading to long healing times. Traditional approaches for managing wound infections rely heavily on systemic antibiotics, which are associated with the emergence of antibiotic-resistant bacteria. Therefore, the development of alternative antibacterial materials for wound care has gained considerable attention. In today's world, new generations of wound dressing are commonly used to heal wounds. These new dressings keep the wound and the area around it moist to improve wound healing. However, this moist environment can also foster an environment that is favorable for the growth of bacteria. Excessive antibiotic use poses a significant threat to human health and causes bacterial resistance, so new-generation wound dressings must be designed and developed to reduce the risk of infection. Wound dressings using antimicrobial compounds minimize wound bacterial colonization, making them the best way to avoid open wound infection. We aim to provide readers with a comprehensive understanding of the latest advancements in antibacterial materials for wound management.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141247277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofoulingPub Date : 2024-05-01Epub Date: 2024-06-05DOI: 10.1080/08927014.2024.2357309
Vania Septa Anggraeni, Hoong Chern Lee, Pei Sean Goh, Putu Doddy Sutrisna, Eric Wei Chiang Chan, Chen Wai Wong
{"title":"Biodegradable ultrafiltration membrane enhanced with anti-biofouling agent from <i>Anacardium occidentale</i> extract.","authors":"Vania Septa Anggraeni, Hoong Chern Lee, Pei Sean Goh, Putu Doddy Sutrisna, Eric Wei Chiang Chan, Chen Wai Wong","doi":"10.1080/08927014.2024.2357309","DOIUrl":"10.1080/08927014.2024.2357309","url":null,"abstract":"<p><p>Our research focuses on developing environmentally friendly biodegradable ultrafiltration (UF) membranes for small-scale water purification in areas lacking infrastructure or during emergencies. To address biofouling challenges without resorting to harmful chemicals, we incorporate bio-based extracts, such as methyl gallate from <i>A. occidentale</i> leaves, a Malaysian ulam herb, known for its quorum sensing inhibition (QSI) properties. The methyl gallate enriched extract was purified by solvent partitioning and integrated into cellulose-based UF membranes (0 to 7.5% w w<sup>-1</sup>) through phase inversion technique. The resulting membranes exhibited enhanced anti-organic fouling and anti-biofouling properties, with flux recovery ratio (FRR) of 87.84 ± 2.00% against bovine serum albumin and FRRs of 76.67 ± 1.89% and 69.57 ± 1.77% against <i>E. coli</i> and <i>S. aureus</i>, respectively. The CA/MG-5 membrane showed a 224% improvement in pure water flux (PWF) compared to the neat CA membrane. Our innovative approach significantly improves PWF, presenting an environmentally friendly method for biofouling prevention in UF membrane applications.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141247273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofoulingPub Date : 2024-04-19DOI: 10.1080/08927014.2024.2339438
Phumlile P. Mamba, Titus A. M. Msagati, Bhekie B. Mamba, Machawe M. Motsa, Thabo T. I. Nkambule
{"title":"The removal of pathogenic bacteria and dissolved organic matter from freshwater using microporous membranes: insights into biofilm formation and fouling reversibility","authors":"Phumlile P. Mamba, Titus A. M. Msagati, Bhekie B. Mamba, Machawe M. Motsa, Thabo T. I. Nkambule","doi":"10.1080/08927014.2024.2339438","DOIUrl":"https://doi.org/10.1080/08927014.2024.2339438","url":null,"abstract":"Pathogenic bacteria in drinking-water pose a health risk to consumers, as they compromise the quality of portable water. Chemical disinfection of water containing dissolved organic matter (DOM) cau...","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140630434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}