Biofouling最新文献

筛选
英文 中文
Impact of hydrophobic and hydrophilic surface properties on Pseudomonas aeruginosa adhesion in materials used in mineral water wells. 疏水和亲水表面特性对矿泉水井所用材料中铜绿假单胞菌粘附性的影响。
IF 2.6 3区 生物学
Biofouling Pub Date : 2024-11-01 Epub Date: 2024-10-08 DOI: 10.1080/08927014.2024.2410771
Danilo Vilas Boas, Clara M G Lima, Larissa P Margalho, Dionísio P Amorim-Neto, Héctor D S Canales, Wilson J F Lemos Junior, Ana Carolina Ramos, Giancarlo Saraiva, Anderson S Sant'Ana
{"title":"Impact of hydrophobic and hydrophilic surface properties on <i>Pseudomonas aeruginosa</i> adhesion in materials used in mineral water wells.","authors":"Danilo Vilas Boas, Clara M G Lima, Larissa P Margalho, Dionísio P Amorim-Neto, Héctor D S Canales, Wilson J F Lemos Junior, Ana Carolina Ramos, Giancarlo Saraiva, Anderson S Sant'Ana","doi":"10.1080/08927014.2024.2410771","DOIUrl":"10.1080/08927014.2024.2410771","url":null,"abstract":"<p><p>Microbiologically contaminated water is a significant source of infections in humans and animals, with <i>Pseudomonas aeruginosa</i> (PSA) being particularly concerning due to its ability to thrive in water environments and its resistance to many disinfectants. Therefore, this study investigates the adhesion potential of PSA strains on various materials used in mineral water extraction wells, focusing on hydrophobic and hydrophilic properties. Mineral water samples were collected from three wells (P-01, P-07, and P-08) within the Guarani Aquifer System and Fractured Aquifer System (SAF) in Brazil. The physicochemical properties of the water, including concentrations of Sr (strontium), Fe (iron), Si (silicon), SO<sub>4</sub><sup>2-</sup> (sulfate ions), Cl<sup>-</sup> (chloride ions), and ORP (oxidation-reduction potential), were analyzed. Results indicated higher PSA adhesion on hydrophobic materials, particularly high-density polyethylene (HDPE) and geomechanically plasticized polyvinyl chloride (PVC). Multiple correlation analyses revealed positive correlations between PSA adhesion on hydrophilic materials and Sr, Fe, Si, SO<sub>4</sub><sup>2-</sup>, and Cl<sup>-</sup> concentrations. Conversely, ORP negatively correlated with bacterial adhesion on PVC surfaces, suggesting higher ORP values reduced PSA attachment. These findings highlight the importance of water composition and material properties in influencing bacterial adhesion and potential biofilm formation in mineral water extraction systems.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"735-742"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of different growth conditions on the composition and acidogenicity of saliva-derived microcosm biofilm and their effects on enamel demineralization. 不同生长条件对唾液衍生微宇宙生物膜的成分和酸度的影响及其对珐琅质脱矿化的影响。
IF 2.6 3区 生物学
Biofouling Pub Date : 2024-11-01 Epub Date: 2024-10-08 DOI: 10.1080/08927014.2024.2410781
Caio Sampaio, Daniela Alejandra Cusicanqui Méndez, Marília Afonso Rabelo Buzalaf, Juliano Pelim Pessan, Thiago Cruvinel
{"title":"Influence of different growth conditions on the composition and acidogenicity of saliva-derived microcosm biofilm and their effects on enamel demineralization.","authors":"Caio Sampaio, Daniela Alejandra Cusicanqui Méndez, Marília Afonso Rabelo Buzalaf, Juliano Pelim Pessan, Thiago Cruvinel","doi":"10.1080/08927014.2024.2410781","DOIUrl":"10.1080/08927014.2024.2410781","url":null,"abstract":"<p><p>This study compared the influence of growth conditions on the composition and acidogenicity of saliva-derived microcosm biofilms and enamel demineralization. Biofilms grown in sucrose-supplemented modified McBain medium, containing 25/50 mmol/L PIPES (buffer), under anaerobiosis/microaerophilia, for 3 and 7 days were evaluated for their acidogenicity, microbial composition, matrix, and enamel mineral content. The viability of total lactobacilli was higher in the group containing 25 mmol/L PIPES grown under anaerobiosis, which also showed lower pH values. The viability of total streptococci and total microorganisms was significantly higher at 7 days in the groups with 50 mmol/L PIPES than at 3 days, regardless of the incubation atmosphere. No significant differences were observed in lactic acid, calcium, superficial hardness loss, or lesion depth. In conclusion, the incubation atmosphere, buffer content in the growth media, and duration of biofilm formation displayed species-varied influence on microcosm biofilms, without causing significant changes in acid metabolism or enamel demineralization.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"743-753"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulating effects of fodder grasses extracts on antibiotic sensitivity and biofilm production in avian pathogenic Escherichia coli strains. 饲料草提取物对禽类致病性大肠埃希氏菌株抗生素敏感性和生物膜生成的调节作用。
IF 2.6 3区 生物学
Biofouling Pub Date : 2024-11-01 Epub Date: 2024-10-11 DOI: 10.1080/08927014.2024.2414222
Zoya Samoilova, Galina Smirnova, Lyubov Sutormina, Oleg Oktyabrsky
{"title":"Modulating effects of fodder grasses extracts on antibiotic sensitivity and biofilm production in avian pathogenic <i>Escherichia coli</i> strains.","authors":"Zoya Samoilova, Galina Smirnova, Lyubov Sutormina, Oleg Oktyabrsky","doi":"10.1080/08927014.2024.2414222","DOIUrl":"10.1080/08927014.2024.2414222","url":null,"abstract":"<p><p>Extracts of certain fodder grasses may be viewed as powerful agents against infections induced by avian pathogenic <i>Escherichia coli</i> strains. Here we demonstrated ability of <i>Galega orientalis</i> and <i>Rhaponticum carthamoides</i> extracts, alone or in combination with antibiotics, to inhibit growth, viability and biofilm formation in avian pathogenic <i>Escherichia coli</i> strains with different sensitivity to antibiotics and non-pathogenic laboratory strain <i>E. coli</i> BW25113 as well as its mutant derivatives. Modulation of motility and production of extracellular structures in the presence of the extracts correlated with their anti-biofilm effects. Interestingly, an increase in antibacterial action of kanamycin, streptomycin, ciprofloxacin, and cefotaxime on both biofilms and planktonic cultures of the studied strains was observed in the presence of the extracts, including antibiotic resistant APEC strain #45. The extracts alone showed weak prooxidant activity which could contribute to modification of redox-sensitive sites of various regulatory circuits, resulting to synergetic effects in combination with antibiotics.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"816-830"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of Desulfovibrio caledoniensis and Pseudomonas aeruginosa on the corrosion behaviour of 70Cu-30Ni alloy. 加里多尼亚脱硫弧菌和铜绿假单胞菌对70Cu-30Ni合金腐蚀行为的影响。
IF 2.6 3区 生物学
Biofouling Pub Date : 2024-11-01 Epub Date: 2024-12-03 DOI: 10.1080/08927014.2024.2435023
Li-Jun He, Zheng-Hui Qiu, Shao-Xia Ma, Rong-Chang Zeng, Cun-Guo Lin
{"title":"The effect of <i>Desulfovibrio caledoniensis</i> and <i>Pseudomonas aeruginosa</i> on the corrosion behaviour of 70Cu-30Ni alloy.","authors":"Li-Jun He, Zheng-Hui Qiu, Shao-Xia Ma, Rong-Chang Zeng, Cun-Guo Lin","doi":"10.1080/08927014.2024.2435023","DOIUrl":"10.1080/08927014.2024.2435023","url":null,"abstract":"<p><p>This work investigated the effect of <i>Desulfovibrio caledoniensis</i> (<i>D. caledoniensis</i>) and <i>Pseudomonas aeruginosa</i> (<i>P. aeruginosa</i>) on the microbiologically influenced corrosion (MIC) behaviour of 70Cu-30Ni alloy using surface analysis and electrochemical techniques. The results demonstrated that the mixed medium containing <i>D. caledoniensis</i> and <i>P. aeruginosa</i> further accelerated the MIC of 70Cu-30Ni alloy compared to the single species medium. The addition of exogenous pyocyanin (PYO) to the <i>D. caledoniensis</i> medium increased the maximum pit depth on 70Cu-30Ni alloy from 5.40 μm to 6.59 μm, and the corrosion current density (<i>i</i><sub>corr</sub>) increased by one order of magnitude. From the perspective of bioenergetics and extracellular electron transfer (EET), the comprehensive MIC mechanism of 70Cu-30Ni alloy induced by <i>D. caledoniensis</i> and <i>P. aeruginosa</i> was proposed.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"979-995"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decrease from main root canal and intratubular Fusobacterium nucleatum and its endotoxin after ultrasonic activation of conventional and alternative irrigation solutions. 传统和替代冲洗溶液经超声波激活后,主根管和管腔内核分枝杆菌及其内毒素的减少。
IF 2.6 3区 生物学
Biofouling Pub Date : 2024-11-01 Epub Date: 2024-11-27 DOI: 10.1080/08927014.2024.2426765
Mirela Cesar Barros, Victor Feliz Pedrinha, Felipe Eduardo Oliveira, Maria Cristina Marcucci, Brenda Paula F A Gomes, Luciane Dias de Oliveira, Flaviana Bombarda de Andrade
{"title":"Decrease from main root canal and intratubular <i>Fusobacterium nucleatum</i> and its endotoxin after ultrasonic activation of conventional and alternative irrigation solutions.","authors":"Mirela Cesar Barros, Victor Feliz Pedrinha, Felipe Eduardo Oliveira, Maria Cristina Marcucci, Brenda Paula F A Gomes, Luciane Dias de Oliveira, Flaviana Bombarda de Andrade","doi":"10.1080/08927014.2024.2426765","DOIUrl":"10.1080/08927014.2024.2426765","url":null,"abstract":"<p><p>This study evaluated conventional and alternative irrigation solutions combined with ultrasonic irrigant activation (UIA) against <i>Fusobacterium nucleatum</i> (<i>F. nucleatum</i>) and its endotoxin (LPS) in main root canal and dentinal tubules, using a new intratubular infection model. Seventy dentin cylinders were infected with <i>F. nucleatum</i> for seven days under anaerobic conditions and treated with 2.5% sodium hypochlorite (NaOCl), limewater + 2.5% NaOCl, and 10% ethanolic propolis extract (EEP), administered by syringe irrigation (SI) or UIA. Microbiological samples were collected before and after irrigation to determine CFU ml<sup>-1</sup> and LPS levels. Confocal microscopy assessed bacterial membrane damage with Live/Dead staining. Irrigation solutions effectively reduced CFU ml<sup>-1</sup>. UIA caused greater damage to the bacterial membranes and reduced LPS levels. The ultrasonic activation of 10% EEP and limewater + 2.5% NaOCl were comparable to 2.5% NaOCl (<i>p</i> > 0.05). UIA improved the effectiveness of solutions, suggesting potential for alternative substances. Randomized clinical trials using these protocols are recommended.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"904-914"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142725034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiological indicators of the biofilms microparticles of quartz sand and polypropylene after short-term exposure in soil. 石英砂和聚丙烯微粒在土壤中短期暴露后的生物膜微生物指标。
IF 2.6 3区 生物学
Biofouling Pub Date : 2024-11-01 Epub Date: 2024-09-25 DOI: 10.1080/08927014.2024.2406340
Nataliia Tkachuk, Liubov Zelena
{"title":"Microbiological indicators of the biofilms microparticles of quartz sand and polypropylene after short-term exposure in soil.","authors":"Nataliia Tkachuk, Liubov Zelena","doi":"10.1080/08927014.2024.2406340","DOIUrl":"10.1080/08927014.2024.2406340","url":null,"abstract":"<p><p>The purpose of this study was to investigate dynamics of biofilm biomass on microparticles of natural material quartz sand and the artificial material polypropylene (plastisphere) as well as change in biofilm-forming microorganisms' number under a short-term <i>in situ</i> field study. In this study microparticles of polypropylene and quartz sand ranging in size from 3 to 5 mm were used. The total microbial count and the number of sulfate-reducing bacteria in the biofilm (by traditional culture-based microbiological methods) and the biofilm biomass (by the method with the crystal violet) were investigated. According to the determined microbiological indicators, over time (90 days) on the polypropylene it was observed decreasing of both the number of studied groups of microorganisms and the formation of a microbial biofilm, compared to the quartz sand. Determination of microbiological indicators of the materials surface allows understanding the aspects of their preservation/removal from the environment and requires additional research.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"723-734"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Repurposing simvastatin for treatment of Klebsiella pneumoniae infections: in vitro and in vivo study. 将辛伐他汀重新用于治疗肺炎克雷伯氏菌感染:体外和体内研究。
IF 2.6 3区 生物学
Biofouling Pub Date : 2024-11-01 Epub Date: 2024-10-10 DOI: 10.1080/08927014.2024.2413652
Ehssan Moglad, Engy Elekhnawy, Nuor Alanazi, Omnia Momtaz Al-Fakhrany
{"title":"Repurposing simvastatin for treatment of <i>Klebsiella pneumoniae</i> infections: <i>in vitro</i> and <i>in vivo</i> study.","authors":"Ehssan Moglad, Engy Elekhnawy, Nuor Alanazi, Omnia Momtaz Al-Fakhrany","doi":"10.1080/08927014.2024.2413652","DOIUrl":"10.1080/08927014.2024.2413652","url":null,"abstract":"<p><p>Simvastatin had minimum inhibitory concentrations of 32 to 128 µg/mL against Klebsiella pneumoniae isolates and hindered the biofilm-formation ability of 58.54% of the isolates. It considerably diminished the bacterial cell counts in the biofilms as revealed by scanning electron microscope. Also, qRT-PCR revealed a downregulation of the biofilm genes (bcsA, wza, and luxS) by simvastatin in 48.78% of the isolates. Moreover, simvastatin has significantly improved the survival of mice and decreased the burden of bacteria in the infected lungs. Also, the histological architecture was substantially improved in the simvastatin-treated group, as the alveolar sacs and bronchioles appeared normal with minimal collagen fiber deposition. The immunohistochemical studies exposed that the TNF-α, NF-kβ, and COX-2 immunostaining considerably declined in the simvastatin-treated group. Furthermore, ELISA exposed that both IL-1β and IL-6 were considerably diminished in the lungs of the simvastatin-treated group.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"801-815"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryptocarya moschata fractions decrease planktonic cells and biofilms of Candida albicans and Streptococcus mutans. 隐翅虫萃取物能减少白色念珠菌和变异链球菌的浮游细胞和生物膜。
IF 2.6 3区 生物学
Biofouling Pub Date : 2024-11-01 Epub Date: 2024-10-24 DOI: 10.1080/08927014.2024.2418466
Jonatas Silva de Oliveira, Beatriz Ribeiro Ribas, Amanda Costa Ferro, Camilla Olga Tasso, Rafaelly Camargo, Alberto José Cavalheiro, Janaina Habib Jorge
{"title":"<i>Cryptocarya moschata</i> fractions decrease planktonic cells and biofilms of <i>Candida albicans</i> and <i>Streptococcus mutans</i>.","authors":"Jonatas Silva de Oliveira, Beatriz Ribeiro Ribas, Amanda Costa Ferro, Camilla Olga Tasso, Rafaelly Camargo, Alberto José Cavalheiro, Janaina Habib Jorge","doi":"10.1080/08927014.2024.2418466","DOIUrl":"10.1080/08927014.2024.2418466","url":null,"abstract":"<p><p>Extracts of <i>Cryptocarya</i> species have been shown to reduce biofilms, demonstrating their antimicrobial effects. The extracts can be fractionated to optimize their potential. In this study, we evaluated the antimicrobial activity of <i>Cryptocarya moschata</i> fractions against planktonic cells and biofilms of <i>Candida albicans</i> and <i>Streptococcus mutans</i>. Four fractions were prepared: 100% hexane, acetate/hexane 1:1, 100% ethyl acetate, and water. The effect of the fractions on planktonic cells was assessed by counting the colony-forming units per milliliter (CFU/mL). Biofilm tests included CFU/mL, cell metabolic activity, and qualitative analysis using confocal laser scanning microscopy (CLSM). Results were analyzed by the Mann-Whitney U test (α = 0.05). The fractions contained lipophilic constituents, styrylpyrones, glycosylated flavonoids, and alkaloids. Acetate/hexane (1:1) and 100% ethyl acetate fractions reduced the CFU/mL of planktonic <i>C. albicans. C. moschata</i> fractions did not affect planktonic <i>S. mutans</i>. For biofilms, the fractions reduced the CFU/mL (from 2-5 logs) and cell metabolic activity (approximately 80% reduction in a single-species biofilm). CLSM showed the fractions reduced microorganism viability and damaged the extracellular matrix of biofilms. We conclude that the acetate/hexane 1:1 and 100% ethyl acetate <i>C. moschata</i> fractions exhibit antimicrobial effects against biofilms.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"831-846"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cuminaldehyde in combination with tetracycline shows promising antibiofilm activity against drug-resistant Pseudomonas aeruginosa. 库米那醛与四环素联用对耐药铜绿假单胞菌具有良好的抗生物膜活性。
IF 2.6 3区 生物学
Biofouling Pub Date : 2024-11-01 Epub Date: 2024-11-04 DOI: 10.1080/08927014.2024.2422874
Moumita Malik, Sharmistha Das, Payel Paul, Poulomi Chakraborty, Ritwik Roy, Alakesh Maity, Awantika Das, Monikankana Dasgupta, Saranya Trivedi, Prosun Tribedi
{"title":"Cuminaldehyde in combination with tetracycline shows promising antibiofilm activity against drug-resistant <i>Pseudomonas aeruginosa</i>.","authors":"Moumita Malik, Sharmistha Das, Payel Paul, Poulomi Chakraborty, Ritwik Roy, Alakesh Maity, Awantika Das, Monikankana Dasgupta, Saranya Trivedi, Prosun Tribedi","doi":"10.1080/08927014.2024.2422874","DOIUrl":"10.1080/08927014.2024.2422874","url":null,"abstract":"<p><p><i>Pseudomonas aeruginosa</i>, an opportunistic pathogen often causes biofilm-linked infections. A combinatorial approach involving tetracycline (antibiotic) and cuminaldehyde (phytochemical) was explored to combat this infectious pathogen. The results showed that both tetracycline and cuminaldehyde individually demonstrated antibacterial effects. However, when the compounds were applied together, there was a significant increase in their antimicrobial potential. The determined fractional inhibitory concentration index of 0.43 indicated a synergistic interaction between the two compounds. Furthermore, a series of experiments demonstrated that the combined application of cuminaldehyde and tetracycline could lead to a significant enhancement of their antibiofilm potential. This enhanced antibiofilm potential was attributed to the accumulation of reactive oxygen species and increased cell membrane permeability. Besides, this combinatorial application reduced the secretion of various virulence factors from <i>P. aeruginosa</i>. Therefore, this combined approach holds promise for effectively treating <i>P. aeruginosa</i> biofilms.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"862-881"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of environment-friendly biomimetic bionic superhydrophobic surfaces. 环境友好型生物仿生超疏水表面综述。
IF 2.6 3区 生物学
Biofouling Pub Date : 2024-11-01 Epub Date: 2024-10-18 DOI: 10.1080/08927014.2024.2414922
Udhayakumar Murugan, Dakshesh Gusain, Baskar Balasubramani, Sagar Srivastava, Sai Ganesh, Srikrishnan Ambattu Raghavannambiar, Kannan Ramaraj
{"title":"A comprehensive review of environment-friendly biomimetic bionic superhydrophobic surfaces.","authors":"Udhayakumar Murugan, Dakshesh Gusain, Baskar Balasubramani, Sagar Srivastava, Sai Ganesh, Srikrishnan Ambattu Raghavannambiar, Kannan Ramaraj","doi":"10.1080/08927014.2024.2414922","DOIUrl":"10.1080/08927014.2024.2414922","url":null,"abstract":"<p><p>Marine fouling is a global problem that harms the ocean's ecosystem and the marine industrial sector. Traditional antifouling methods use harmful agents that damage the environment. As a result, recent research has focused on developing environmentally friendly, long-lasting, and sustainable antifouling solutions. Scientists have turned to nature for inspiration, particularly the water-repellent properties found in the microstructures of plants, insects and animals like the lotus leaf, butterfly, and shark. This review summarizes the current trends in developing superhydrophobic materials and fabrication techniques for bionic antifouling strategies. These strategies mimic the surface microstructures of various biological species, including the lotus leaf, coral tentacles, and the skins of sharks, whales, and dolphins. The review also discusses the technological applications of these biomimetic materials and the challenges associated with implementing them in the marine sector. Overall, the goal is to harness the superhydrophobicity of natural surfaces to create effective antifouling solutions.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"679-701"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信