Cyanobacteria fouling in photobioreactors: current status and future perspectives for prevention.

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Suvarna N L Talluri, Daniel Rittschof, Robb M Winter, David R Salem
{"title":"Cyanobacteria fouling in photobioreactors: current status and future perspectives for prevention.","authors":"Suvarna N L Talluri, Daniel Rittschof, Robb M Winter, David R Salem","doi":"10.1080/08927014.2025.2499107","DOIUrl":null,"url":null,"abstract":"<p><p>Cyanobacteria biomass sources have the potential to contribute to the replacement of fossil fuels and to the reduction in global warming by sustainable conversion of atmospheric CO<sub>2</sub> into biofuels and high-value chemicals. Cyanobacteria cultivation in photobioreactors (PBRs) results in biofouling on their transparent inner walls, which reduces photosynthetic efficiency and productivity. While cyanobacteria biofouling in PBRs is recognized as a significant operating challenge, this review draws attention to the lack of studies on antifouling strategies for PBRs involving cyanobacteria and discusses several areas related to cyanobacteria fouling mechanisms on PBR materials, which require further investigation. These include an in-depth analysis of conditioning films, the role of pili and EPS in gliding and adhesion, potential revisions to existing theoretical models for predicting adhesion, and material properties that affect cyanobacteria adhesion. We use knowledge from marine, medical, and industrial biofouling management to help identify strategies to combat cyanobacteria fouling in PBRs, and we review the applicability of various bioinspired physical and chemical strategies, as well as genetic engineering approaches to prevent cyanobacteria biofilm formation in PBRs.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1-27"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2025.2499107","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cyanobacteria biomass sources have the potential to contribute to the replacement of fossil fuels and to the reduction in global warming by sustainable conversion of atmospheric CO2 into biofuels and high-value chemicals. Cyanobacteria cultivation in photobioreactors (PBRs) results in biofouling on their transparent inner walls, which reduces photosynthetic efficiency and productivity. While cyanobacteria biofouling in PBRs is recognized as a significant operating challenge, this review draws attention to the lack of studies on antifouling strategies for PBRs involving cyanobacteria and discusses several areas related to cyanobacteria fouling mechanisms on PBR materials, which require further investigation. These include an in-depth analysis of conditioning films, the role of pili and EPS in gliding and adhesion, potential revisions to existing theoretical models for predicting adhesion, and material properties that affect cyanobacteria adhesion. We use knowledge from marine, medical, and industrial biofouling management to help identify strategies to combat cyanobacteria fouling in PBRs, and we review the applicability of various bioinspired physical and chemical strategies, as well as genetic engineering approaches to prevent cyanobacteria biofilm formation in PBRs.

光生物反应器中蓝藻污染:现状及未来预防展望。
蓝藻生物质资源有潜力通过可持续地将大气中的二氧化碳转化为生物燃料和高价值化学品,为替代化石燃料和减少全球变暖做出贡献。在光生物反应器(PBRs)中培养蓝藻会导致其透明内壁上的生物污垢,从而降低光合效率和生产力。虽然PBR中的蓝藻生物污染被认为是一个重大的操作挑战,但本文指出缺乏涉及蓝藻的PBR防污策略的研究,并讨论了蓝藻对PBR材料的污染机制相关的几个领域,这些领域需要进一步研究。其中包括对调理膜的深入分析,毛和EPS在滑动和粘附中的作用,对现有预测粘附的理论模型的潜在修订,以及影响蓝藻粘附的材料特性。我们利用海洋、医学和工业生物污染管理方面的知识来帮助确定对抗pbr中蓝藻污染的策略,并回顾了各种生物启发的物理和化学策略的适用性,以及基因工程方法来防止pbr中蓝藻生物膜的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofouling
Biofouling 生物-海洋与淡水生物学
CiteScore
5.00
自引率
7.40%
发文量
57
审稿时长
1.7 months
期刊介绍: Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion. Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context. Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信