NMR-based metabolomics of Burkholderia pseudomallei biofilms and extracellular polymeric substance cultured in LB and MVBM media.

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Suthantip Srithabut, Pisit Chareonsudjai, Thotsapol Chaianunporn, Chainarong Bunma, Jutarop Phetcharaburanin, Manida Suksawat, Suwalak Chitcharoen, Sorujsiri Chareonsudjai
{"title":"NMR-based metabolomics of <i>Burkholderia pseudomallei</i> biofilms and extracellular polymeric substance cultured in LB and MVBM media.","authors":"Suthantip Srithabut, Pisit Chareonsudjai, Thotsapol Chaianunporn, Chainarong Bunma, Jutarop Phetcharaburanin, Manida Suksawat, Suwalak Chitcharoen, Sorujsiri Chareonsudjai","doi":"10.1080/08927014.2025.2502936","DOIUrl":null,"url":null,"abstract":"<p><p><i>Burkholderia pseudomallei</i> biofilms are resistant to antibiotics and immune responses, leading to persistent infections. This study aimed to investigate the metabolic profiles of <i>B. pseudomallei</i> in biofilms and the extracellular polymeric substances (EPS) produced during grown in LB or MVBM medium using Nuclear Magnetic Resonance (NMR) spectroscopy to identify key metabolites. The results revealed similar biofilm metabolites in both media. However, betaine was detected in LB, but not in the case of MVBM. Acetate was significantly higher in MVBM compared to that of LB. Pathway analysis revealed that betaine-producing <i>B. pseudomallei</i> biofilm in LB was associated with metabolism of glycine, serine, and threonine, while acetate in MVBM was associated with metabolism of taurine and hypotaurine, phosphonate and phosphinate, and glycolysis/gluconeogenesis. The NMR analysis of EPS disclosed shared metabolites including dimethylsulfide, 1-methyluric acid and oxypurinol. This study provides the first extensive investigation into <i>B. pseudomallei</i> biofilm and EPS metabolites, identifying pathways that offer potential targets for combating <i>B. pseudomallei</i> biofilm-associated infections.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1-14"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2025.2502936","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Burkholderia pseudomallei biofilms are resistant to antibiotics and immune responses, leading to persistent infections. This study aimed to investigate the metabolic profiles of B. pseudomallei in biofilms and the extracellular polymeric substances (EPS) produced during grown in LB or MVBM medium using Nuclear Magnetic Resonance (NMR) spectroscopy to identify key metabolites. The results revealed similar biofilm metabolites in both media. However, betaine was detected in LB, but not in the case of MVBM. Acetate was significantly higher in MVBM compared to that of LB. Pathway analysis revealed that betaine-producing B. pseudomallei biofilm in LB was associated with metabolism of glycine, serine, and threonine, while acetate in MVBM was associated with metabolism of taurine and hypotaurine, phosphonate and phosphinate, and glycolysis/gluconeogenesis. The NMR analysis of EPS disclosed shared metabolites including dimethylsulfide, 1-methyluric acid and oxypurinol. This study provides the first extensive investigation into B. pseudomallei biofilm and EPS metabolites, identifying pathways that offer potential targets for combating B. pseudomallei biofilm-associated infections.

假马利氏伯克氏菌生物膜和细胞外聚合物在LB和MVBM培养基中培养的核磁共振代谢组学。
假杆菌伯克霍尔德菌生物膜对抗生素和免疫反应具有耐药性,导致持续感染。本研究旨在利用核磁共振(NMR)技术研究假假芽孢杆菌在生物膜中的代谢特征,以及在LB或MVBM培养基中生长过程中产生的细胞外聚合物(EPS),以确定关键代谢产物。结果显示两种培养基中的生物膜代谢物相似。然而,在LB中检测到甜菜碱,而在MVBM中未检测到甜菜碱。与LB相比,MVBM中的醋酸盐含量显著高于LB。途径分析显示,LB中产生甜菜碱的假假芽孢杆菌生物膜与甘氨酸、丝氨酸和苏氨酸的代谢有关,而MVBM中的醋酸盐与牛磺酸和次牛磺酸、膦酸盐和膦酸盐的代谢以及糖酵解/糖异生有关。EPS的核磁共振分析显示其共有代谢物包括二甲基硫化物、1-甲基尿酸和氧尿醇。本研究首次对假芽孢杆菌生物膜和EPS代谢物进行了广泛的研究,确定了为对抗假芽孢杆菌生物膜相关感染提供潜在靶点的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofouling
Biofouling 生物-海洋与淡水生物学
CiteScore
5.00
自引率
7.40%
发文量
57
审稿时长
1.7 months
期刊介绍: Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion. Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context. Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信