{"title":"Protective effect of <i>Bifidobacterium longum</i> BB536 against nausea caused by pirfenidone in a mouse model of pellagra.","authors":"Koji Kuronuma, Natsumi Susai, Tomohiro Kuroita, Takeshi Yoshioka, Atsushi Saito, Hirofumi Chiba","doi":"10.12938/bmfh.2022-042","DOIUrl":"https://doi.org/10.12938/bmfh.2022-042","url":null,"abstract":"<p><p>Pellagra is caused by abnormal intake and/or use of nicotinic acid and is known in part to be induced by the use of medications such as isoniazid or pirfenidone. We previously investigated atypical phenotypes of pellagra, such as nausea, using a mouse model of pellagra and found that gut microbiota play an important role in the development of these phenotypes. Here, we investigated the effect of <i>Bifidobacterium longum</i> BB536 on pellagra-related nausea caused by pirfenidone in our mouse model. Our pharmacological data indicated that pirfenidone (PFD) causes modulation of the gut microbiota profile, which appeared to play an important role in the development of pellagra-related nausea. A gut microbiota-mediated protective effect of <i>B. longum</i> BB536 against nausea caused by PFD was also identified. Finally, the urinary ratio of nicotinamide/N-methylnicotinamide was shown to be a biomarker of pellagra-like adverse effects induced by PFD, and it may contribute to the prevention of these effects in patients with idiopathic pulmonary fibrosis.</p>","PeriodicalId":8867,"journal":{"name":"Bioscience of Microbiota, Food and Health","volume":"42 3","pages":"195-202"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d3/07/bmfh-42-195.PMC10315189.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9804963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shanshan Qi, Donghua Liu, Bo Ma, Lei Yang, Haitao Yu
{"title":"Screening of the most efficacious lactic acid bacteria strain for myocardial infarction recovery and verification and exploration of its functions and mechanisms.","authors":"Shanshan Qi, Donghua Liu, Bo Ma, Lei Yang, Haitao Yu","doi":"10.12938/bmfh.2021-044","DOIUrl":"https://doi.org/10.12938/bmfh.2021-044","url":null,"abstract":"<p><p>Screening efficient strains by cell platform is cost-effective, but to date, no screening experiments have been performed for targeted lactic acid bacteria with hypoxic/reoxygenation (H/R)-treated cardiomyocytes, and their effects on the phosphoinositide 3-kinase (PI3K)/protein kinase b (Akt)/endothelial nitric oxide synthase (eNOS) pathway in myocardial infarction (MI) are unclear. Here we activated 102 strains of lactic acid bacteria and inoculated them into MRS medium for fermentation. The fermentation supernatants of the lactic acid bacteria were incubated with an H/R model of H9C2 cells. We found that <i>Bifidobacterium longum</i> ZL0210 had the greatest potential for inhibiting the apoptosis of H/R-induced H9C2 cells. Furthermore, it significantly increased the expression of heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO1) in H9C2 cardiomyocytes, as well as the Bcl-2/Bax protein ratio, protecting damaged myocardial cells via an anti-apoptotic pathway. Intragastric administration of <i>B. longum</i> ZL0210 to mice for one week before and after establishment of an MI model drastically attenuated the myocardial cell hypertrophy and fibrosis of the MI mice. Meanwhile, <i>B. longum</i> ZL0210 significantly reduced the secretion of myocardial enzymes, increased the activity of antioxidant enzymes, and inhibited lipid-oxidative malondialdehyde (MDA) levels. Moreover, it upregulated the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein and the phosphorylation levels of PI3K, Akt, and eNOS, resulting in increased NO contents. In summary, we screened 102 strains of lactic acid bacteria with a cell platform and determined that <i>B. longum</i> ZL0210 was a favorable candidate for protecting the myocardium. We are the first to reveal the protective effects of <i>B. longum</i> ZL0210 for MI via activation of the PI3K/Akt/eNOS pathway through TRAIL.</p>","PeriodicalId":8867,"journal":{"name":"Bioscience of Microbiota, Food and Health","volume":"42 1","pages":"13-23"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c2/fa/bmfh-42-013.PMC9816043.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9103332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Amounts and species of probiotic lactic acid bacteria affect stimulation of short-chain fatty acid production in fecal batch culture.","authors":"Yuji Ohashi, Tomohiko Fujisawa","doi":"10.12938/bmfh.2022-048","DOIUrl":"https://doi.org/10.12938/bmfh.2022-048","url":null,"abstract":"<p><p>The effects of lactate and probiotic lactic acid bacteria (LAB) on intestinal fermentation were analyzed using a fecal batch culture. Lactate was efficiently metabolized to butyrate and propionate by butyrate-utilizing bacteria in fecal fermentation. Probiotic LAB could stimulate butyrate and propionate production through their lactate production in fecal fermentation. It was considered that 10<sup>9</sup> cfu/g or more of probiotic LAB would be required to stimulate butyrate and propionate production in the large intestine. Due to the low production of lactate, a larger number of heterofermentative LAB than homofermentative LAB would be required for this stimulation.</p>","PeriodicalId":8867,"journal":{"name":"Bioscience of Microbiota, Food and Health","volume":"42 1","pages":"100-103"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1f/85/bmfh-42-100.PMC9816051.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9103338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diverse impact of a probiotic strain, <i>Lacticaseibacillus paracasei</i> Shirota, on peripheral mononuclear phagocytic cells in healthy Japanese office workers: a randomized, double-blind, controlled trial.","authors":"Tomoaki Naito, Masatoshi Morikawa, Mayuko Yamamoto-Fujimura, Akira Iwata, Ayaka Maki, Noriko Kato-Nagaoka, Kosuke Oana, Junko Kiyoshima-Shibata, Yumi Matsuura, Rumi Kaji, Osamu Watanabe, Kan Shida, Satoshi Matsumoto, Tetsuji Hori","doi":"10.12938/bmfh.2022-043","DOIUrl":"https://doi.org/10.12938/bmfh.2022-043","url":null,"abstract":"<p><p>Mononuclear phagocytic cells (MPCs) are classified into monocytes (Mos)/macrophages and dendritic cells (DCs) based on their functions. Cells of MPCs lineage act as immune modulators by affecting effector cells, such as NK cells, T cells, and B cells. This study aimed to investigate the effects of <i>Lacticaseibacillus paracasei</i> strain Shirota (LcS) ingestion on peripheral MPCs, particularly on their expression of functional cell-surface molecules enhanced in healthy adults. Thus, twelve healthy office workers consumed a fermented milk drink containing 1.0 × 10<sup>11</sup> cfu of LcS (LcS-FM) or a control unfermented milk drink (CM) once a day for 6 weeks. Peripheral blood mononuclear cells (PBMCs) were prepared from blood samples, and immune cells and functional cell-surface molecules were analyzed. We observed remarkable differences in the expression of HLAABC, MICA, CD40, and GPR43 in plasmacytoid DCs (pDCs) between the LcS-FM and CM groups, whereas no difference was found in CD86 or HLADR expression. The LcS-FM group exhibited higher CD40 expression in both conventional DCs (cDCs) and Mos, especially in type 2 conventional DCs (cDC2s) and classical monocytes (cMos); higher percentages of cMos, intermediate monocytes (iMos), and nonclassical monocytes; and higher numbers of cMos and iMos in PBMCs than the CM group. LcS ingestion increased the expression of HLAABC, MICA, CD40, and GPR43 in pDCs and CD40 in cDCs and Mos, particularly cDC2s and cMos. These results suggest that LcS modulates the function of MPCs that may lead to the regulation of immune effector functions in healthy adults.</p>","PeriodicalId":8867,"journal":{"name":"Bioscience of Microbiota, Food and Health","volume":"42 1","pages":"65-72"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/33/78/bmfh-42-065.PMC9816042.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9103337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Isolation of the high polyamine-producing bacterium <i>Staphylococcus epidermidis</i> FB146 from fermented foods and identification of polyamine-related genes.","authors":"Hideto Shirasawa, Chisato Nishiyama, Rika Hirano, Takashi Koyanagi, Shujiro Okuda, Hiroki Takagi, Shin Kurihara","doi":"10.12938/bmfh.2022-011","DOIUrl":"https://doi.org/10.12938/bmfh.2022-011","url":null,"abstract":"<p><p>It has been reported that the intake of polyamines contributes to the extension of healthy life span in animals. Fermented foods contain high concentrations of polyamines thought to be derived from fermentation bacteria. This suggests that bacteria that produce high levels of polyamines could be isolated from fermented foods and utilized as a source of polyamines for human nutrition. In this study, <i>Staphylococcus epidermidis</i> FB146 was isolated from miso, a Japanese fermented bean paste, and found to have a high concentration of putrescine in its culture supernatant (452 μM). We analyzed the presence of polyamines in the culture supernatants and cells of the type strains of 21 representative <i>Staphylococcus</i> species in addition to <i>S. epidermidis</i> FB146, and only <i>S. epidermidis</i> FB146 showed high putrescine productivity. Furthermore, whole-genome sequencing of <i>S. epidermidis</i> FB146 was performed, and the ornithine decarboxylase gene (<i>odc</i>), which is involved in putrescine synthesis, and the putrescine:ornithine antiporter gene (<i>potE</i>), which is thought to contribute to the release of putrescine into the culture supernatant, were present on plasmid DNA harbored by <i>S. epidermidis</i> FB146.</p>","PeriodicalId":8867,"journal":{"name":"Bioscience of Microbiota, Food and Health","volume":"42 1","pages":"24-33"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/06/6d/bmfh-42-024.PMC9816048.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10554213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Administration of <i>Bifidobacterium pseudolongum</i> suppresses the increase of colonic serotonin and alleviates symptoms in dextran sodium sulfate-induced colitis in mice.","authors":"Misa Tatsuoka, Riku Shimada, Fumina Ohsaka, Kei Sonoyama","doi":"10.12938/bmfh.2022-073","DOIUrl":"https://doi.org/10.12938/bmfh.2022-073","url":null,"abstract":"<p><p>Previous studies suggested that altered gut serotonin (5-HT) signaling is implicated in the pathophysiology of inflammatory bowel disease (IBD). Indeed, 5-HT administration reportedly exacerbated the severity of murine dextran sodium sulfate (DSS)-induced colitis that mimics human IBD. Our recent study suggested that <i>Bifidobacterium pseudolongum</i>, one of the most predominant bifidobacterial species in various mammals, reduces the colonic 5-HT content in mice. The present study thus tested whether the administration of <i>B. pseudolongum</i> prevents DSS-induced colitis in mice. Colitis was induced by administering 3% DSS in drinking water in female BALB/c mice, and <i>B. pseudolongum</i> (10<sup>9</sup> CFU/day) or 5-aminosalicylic acid (5-ASA, 200 mg/kg body weight) was intragastrically administered once daily throughout the experimental period. <i>B. pseudolongum</i> administration reduced body weight loss, diarrhea, fecal bleeding, colon shortening, spleen enlargement, and colon tissue damage and increased colonic mRNA levels of cytokine genes (<i>Il1b</i>, <i>Il6</i>, <i>Il10</i>, and <i>Tnf</i>) almost to an extent similar to 5-ASA administration in DSS-treated mice. <i>B. pseudolongum</i> administration also reduced the increase of colonic 5-HT content, whereas it did not alter the colonic mRNA levels of genes that encode the 5-HT synthesizing enzyme, 5-HT reuptake transporter, 5-HT metabolizing enzyme, and tight junction-associated proteins. We propose that <i>B. pseudolongum</i> is as beneficial against murine DSS-induced colitis as the widely used anti-inflammatory agent 5-ASA. However, further studies are needed to clarify the causal relationship between the reduced colonic 5-HT content and reduced severity of DSS-induced colitis caused by <i>B. pseudolongum</i> administration.</p>","PeriodicalId":8867,"journal":{"name":"Bioscience of Microbiota, Food and Health","volume":"42 3","pages":"186-194"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/78/bmfh-42-186.PMC10315192.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10160016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nguyen Thanh Hai Nguyen, Ming Ban Huang, Fa Yong Liu, Wei-Ling Huang, Huyen-Trang Tran, Tsai-Wen Hsu, Chao-Li Huang, Tzen-Yuh Chiang
{"title":"Deciphering microbial community dynamics along the fermentation course of soy sauce under different temperatures using metagenomic analysis.","authors":"Nguyen Thanh Hai Nguyen, Ming Ban Huang, Fa Yong Liu, Wei-Ling Huang, Huyen-Trang Tran, Tsai-Wen Hsu, Chao-Li Huang, Tzen-Yuh Chiang","doi":"10.12938/bmfh.2022-012","DOIUrl":"https://doi.org/10.12938/bmfh.2022-012","url":null,"abstract":"<p><p>Fermented soy sauce consists of microorganisms that exert beneficial effects. However, the microbial community dynamics during the fermentation course is poorly characterized. Soy sauce production is classified into the stages of mash fermentation with koji (S0), brine addition (S1), microbial transformation (S2), flavor creation (S3), and fermentation completion (S4). In this study, microbial succession was investigated across stages at different temperatures using metagenomics analyses. During mash fermentation, <i>Aspergillus</i> dominated the fungal microbiota in all stages, while the bacterial composition was dominated by <i>Bacillus</i> at room temperature and by a diverse composition of enriched lactic acid bacteria (LAB) at a controlled temperature. Compared with a stable fungal composition, bacterial dynamics were mostly attributable to fluctuations of LAB, which break down carbohydrates into lactic acid. After adding brine, increased levels of <i>Enterococcus</i> and decreased levels of <i>Lactococcus</i> from S1 to S4 may reflect differences in salinity tolerance. <i>Staphylococcus</i>, as a fermentation starter at S0, stayed predominant throughout fermentation and hydrolyzed soybean proteins. Meanwhile, <i>Rhizopus</i> and <i>Penicillium</i> may improve the flavor. The acidification of soy sauce was likely attributable to production of organic acids by <i>Bacillus</i> and LAB under room temperature and controlled temperature conditions, respectively. Metagenomic analysis revealed that microbial succession was associated with the fermentation efficiency and flavor enhancement. Controlled temperature nurture more LAB than uncontrolled temperatures and may ensure the production of lactic acid for the development of soy sauce flavor.</p>","PeriodicalId":8867,"journal":{"name":"Bioscience of Microbiota, Food and Health","volume":"42 2","pages":"104-113"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/69/83/bmfh-42-104.PMC10067331.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9258288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of <i>Bifidobacterium longum</i> CLA8013 on bowel movement improvement: a placebo-controlled, randomized, double-blind study.","authors":"Keisuke Okada, Daisuke Takami, Yutaka Makizaki, Yoshiki Tanaka, Shunji Nakajima, Hiroshi Ohno, Toru Sagami","doi":"10.12938/bmfh.2022-066","DOIUrl":"https://doi.org/10.12938/bmfh.2022-066","url":null,"abstract":"<p><p>A placebo-controlled, randomized, double-blind study was conducted to evaluate the effect of taking 25 billion colony-forming units of heat-killed <i>Bifidobacterium longum</i> CLA8013 over 2 weeks on bowel movements in constipation-prone healthy individuals. The primary endpoint was the change in defecation frequency between the baseline and 2 weeks after the intake of <i>B. longum</i> CLA8013. The secondary endpoints were the number of days of defecation, stool volume, stool consistency, straining during defecation, pain during defecation, feeling of incomplete evacuation after defecation, abdominal bloating, fecal water content, and the Japanese version of the Patient Assessment of Constipation Quality of Life. A total of 120 individuals were assigned to two groups, 104 (control group, n=51; treatment group, n=53) of whom were included in the analysis. After 2 weeks of consuming the heat-killed <i>B. longum</i> CLA8013, defecation frequency increased significantly in the treatment group compared with that in the control group. Furthermore, compared with the control group, the treatment group showed a significant increase in stool volume and significant improvement in stool consistency, straining during defecation, and pain during defecation. No adverse events attributable to the heat-killed <i>B. longum</i> CLA8013 were observed during the study period. This study revealed that heat-killed <i>B. longum</i> CLA8013 improved the bowel movements of constipation-prone healthy individuals and confirmed that there were no relevant safety issues.</p>","PeriodicalId":8867,"journal":{"name":"Bioscience of Microbiota, Food and Health","volume":"42 3","pages":"213-221"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8d/06/bmfh-42-213.PMC10315193.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9801498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Arctigenin-containing burdock sprout extract prevents obesity in association with modulation of the gut microbiota in mice.","authors":"Shimpei Watanabe, Akiko Ohno, Satoshi Yomoda, Satoshi Inamasu","doi":"10.12938/bmfh.2021-070","DOIUrl":"https://doi.org/10.12938/bmfh.2021-070","url":null,"abstract":"<p><p>Several studies have suggested that the gut microbiota affect the health of the host. For example, the Firmicutes/Bacteroidetes (F/B) ratio and the proportion of <i>Akkermansia muciniphila</i> in the microbiota have been closely linked to obesity. In this study, we evaluated the effects of an anti-obesity lignan compound, arctigenin (AG), and burdock sprout extract (GSE), which contains AG, on the gut microbiota of an obese mouse model. C57BL/6J mice were fed high-fat, high-sucrose (HFHS) diets containing AG, GSE, or metformin (MF) for 8 weeks. The composition of the gut microbiota and the cecal content of short-chain fatty acids (SCFAs) were determined using 16S rRNA gene sequencing and high-performance liquid chromatography, respectively. Body weight gain was significantly suppressed in mice treated with AG, GSE, and MF. Analysis of the gut microbiota revealed that the F/B ratio was significantly reduced in the AG- and GSE-treated groups. Furthermore, the copy number of <i>A. muciniphila</i> in the feces was significantly increased in obese mice treated with AG and GSE. In addition, the amount of SCFAs (acetic, propionic, and butyric acids) in the cecal content and their fecal excretions were also significantly increased following AG and GSE treatment. Taken together, these results suggest that AG and GSE prevent obesity by improving the composition of the gut microbiota. Moreover, AG promoted the growth of <i>A. muciniphila in vitro</i>. Thus, AG and GSE may function as novel prebiotic supplements to ameliorate obesity, constipation, and intestinal disorders.</p>","PeriodicalId":8867,"journal":{"name":"Bioscience of Microbiota, Food and Health","volume":"42 1","pages":"49-55"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a0/d5/bmfh-42-049.PMC9816047.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9117425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Camellia oil (<i>Camellia oleifera</i> Abel.) treatment improves high-fat diet-induced atherosclerosis in apolipoprotein E (ApoE)<sup>-/-</sup> mice.","authors":"Tianyang Huang, Jianhui Jiang, YongJun Cao, Junze Huang, Fuan Zhang, Guozhen Cui","doi":"10.12938/bmfh.2022-005","DOIUrl":"https://doi.org/10.12938/bmfh.2022-005","url":null,"abstract":"<p><p>Atherosclerosis is the main cause of cardiovascular diseases, and healthy dietary habits are a feasible strategy to prevent atherosclerosis development. Camellia oil, an edible plant oil, exhibits multiple beneficial cardiovascular effects. Our previous study showed that oral administration of camellia oil attenuated hyperglycemia, fat deposits in the liver, and the atherosclerosis index in high-fat diet (HFD)-induced obese mice. Here, an atherosclerosis model of apolipoprotein E (ApoE)<sup>-/-</sup> mice induced by HFD was used to study the effect of camellia oil on atherosclerosis, and 16S rRNA gene sequencing was used to analyze the changes in gut microbiota composition. The results showed that camellia oil significantly inhibited the formation of atherosclerotic plaques in ApoE<sup>-/-</sup> mice, which were characterized by significantly reduced levels of serum total cholesterol and enhanced levels of serum high-density lipoprotein cholesterol. The aortic levels of interleukin-6 and tumor necrosis factor were decreased. The results of the 16S rRNA analysis showed that after camellia oil interventions, the intestinal flora of ApoE<sup>-/-</sup> mice changed significantly, with the diversity of intestinal flora especially increasing, the relative abundances of Bacteroides, <i>Faecalibaculum, Bilophila</i>, and <i>Leuconostoc</i> increasing, and the Firmicutes/Bacteroidetes ratio and Firmicutes abundance decreasing. Collectively, our findings confirmed the promising value of camellia oil in preventing the development of atherosclerosis in ApoE<sup>-/-</sup> mice. Mechanistically, this preventive effect of camellia oil was probably due to its lipid-lowering activity, anti-inflammatory effects, and alteration of the gut microbiota composition in the mice.</p>","PeriodicalId":8867,"journal":{"name":"Bioscience of Microbiota, Food and Health","volume":"42 1","pages":"56-64"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/68/db/bmfh-42-056.PMC9816045.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10607726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}