Shanshan Qi, Donghua Liu, Bo Ma, Lei Yang, Haitao Yu
{"title":"筛选对心肌梗死恢复最有效的乳酸菌菌株及其功能机制的验证与探索。","authors":"Shanshan Qi, Donghua Liu, Bo Ma, Lei Yang, Haitao Yu","doi":"10.12938/bmfh.2021-044","DOIUrl":null,"url":null,"abstract":"<p><p>Screening efficient strains by cell platform is cost-effective, but to date, no screening experiments have been performed for targeted lactic acid bacteria with hypoxic/reoxygenation (H/R)-treated cardiomyocytes, and their effects on the phosphoinositide 3-kinase (PI3K)/protein kinase b (Akt)/endothelial nitric oxide synthase (eNOS) pathway in myocardial infarction (MI) are unclear. Here we activated 102 strains of lactic acid bacteria and inoculated them into MRS medium for fermentation. The fermentation supernatants of the lactic acid bacteria were incubated with an H/R model of H9C2 cells. We found that <i>Bifidobacterium longum</i> ZL0210 had the greatest potential for inhibiting the apoptosis of H/R-induced H9C2 cells. Furthermore, it significantly increased the expression of heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO1) in H9C2 cardiomyocytes, as well as the Bcl-2/Bax protein ratio, protecting damaged myocardial cells via an anti-apoptotic pathway. Intragastric administration of <i>B. longum</i> ZL0210 to mice for one week before and after establishment of an MI model drastically attenuated the myocardial cell hypertrophy and fibrosis of the MI mice. Meanwhile, <i>B. longum</i> ZL0210 significantly reduced the secretion of myocardial enzymes, increased the activity of antioxidant enzymes, and inhibited lipid-oxidative malondialdehyde (MDA) levels. Moreover, it upregulated the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein and the phosphorylation levels of PI3K, Akt, and eNOS, resulting in increased NO contents. In summary, we screened 102 strains of lactic acid bacteria with a cell platform and determined that <i>B. longum</i> ZL0210 was a favorable candidate for protecting the myocardium. We are the first to reveal the protective effects of <i>B. longum</i> ZL0210 for MI via activation of the PI3K/Akt/eNOS pathway through TRAIL.</p>","PeriodicalId":8867,"journal":{"name":"Bioscience of Microbiota, Food and Health","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c2/fa/bmfh-42-013.PMC9816043.pdf","citationCount":"0","resultStr":"{\"title\":\"Screening of the most efficacious lactic acid bacteria strain for myocardial infarction recovery and verification and exploration of its functions and mechanisms.\",\"authors\":\"Shanshan Qi, Donghua Liu, Bo Ma, Lei Yang, Haitao Yu\",\"doi\":\"10.12938/bmfh.2021-044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Screening efficient strains by cell platform is cost-effective, but to date, no screening experiments have been performed for targeted lactic acid bacteria with hypoxic/reoxygenation (H/R)-treated cardiomyocytes, and their effects on the phosphoinositide 3-kinase (PI3K)/protein kinase b (Akt)/endothelial nitric oxide synthase (eNOS) pathway in myocardial infarction (MI) are unclear. Here we activated 102 strains of lactic acid bacteria and inoculated them into MRS medium for fermentation. The fermentation supernatants of the lactic acid bacteria were incubated with an H/R model of H9C2 cells. We found that <i>Bifidobacterium longum</i> ZL0210 had the greatest potential for inhibiting the apoptosis of H/R-induced H9C2 cells. Furthermore, it significantly increased the expression of heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO1) in H9C2 cardiomyocytes, as well as the Bcl-2/Bax protein ratio, protecting damaged myocardial cells via an anti-apoptotic pathway. Intragastric administration of <i>B. longum</i> ZL0210 to mice for one week before and after establishment of an MI model drastically attenuated the myocardial cell hypertrophy and fibrosis of the MI mice. Meanwhile, <i>B. longum</i> ZL0210 significantly reduced the secretion of myocardial enzymes, increased the activity of antioxidant enzymes, and inhibited lipid-oxidative malondialdehyde (MDA) levels. Moreover, it upregulated the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein and the phosphorylation levels of PI3K, Akt, and eNOS, resulting in increased NO contents. In summary, we screened 102 strains of lactic acid bacteria with a cell platform and determined that <i>B. longum</i> ZL0210 was a favorable candidate for protecting the myocardium. We are the first to reveal the protective effects of <i>B. longum</i> ZL0210 for MI via activation of the PI3K/Akt/eNOS pathway through TRAIL.</p>\",\"PeriodicalId\":8867,\"journal\":{\"name\":\"Bioscience of Microbiota, Food and Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c2/fa/bmfh-42-013.PMC9816043.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience of Microbiota, Food and Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.12938/bmfh.2021-044\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience of Microbiota, Food and Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12938/bmfh.2021-044","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Screening of the most efficacious lactic acid bacteria strain for myocardial infarction recovery and verification and exploration of its functions and mechanisms.
Screening efficient strains by cell platform is cost-effective, but to date, no screening experiments have been performed for targeted lactic acid bacteria with hypoxic/reoxygenation (H/R)-treated cardiomyocytes, and their effects on the phosphoinositide 3-kinase (PI3K)/protein kinase b (Akt)/endothelial nitric oxide synthase (eNOS) pathway in myocardial infarction (MI) are unclear. Here we activated 102 strains of lactic acid bacteria and inoculated them into MRS medium for fermentation. The fermentation supernatants of the lactic acid bacteria were incubated with an H/R model of H9C2 cells. We found that Bifidobacterium longum ZL0210 had the greatest potential for inhibiting the apoptosis of H/R-induced H9C2 cells. Furthermore, it significantly increased the expression of heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO1) in H9C2 cardiomyocytes, as well as the Bcl-2/Bax protein ratio, protecting damaged myocardial cells via an anti-apoptotic pathway. Intragastric administration of B. longum ZL0210 to mice for one week before and after establishment of an MI model drastically attenuated the myocardial cell hypertrophy and fibrosis of the MI mice. Meanwhile, B. longum ZL0210 significantly reduced the secretion of myocardial enzymes, increased the activity of antioxidant enzymes, and inhibited lipid-oxidative malondialdehyde (MDA) levels. Moreover, it upregulated the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein and the phosphorylation levels of PI3K, Akt, and eNOS, resulting in increased NO contents. In summary, we screened 102 strains of lactic acid bacteria with a cell platform and determined that B. longum ZL0210 was a favorable candidate for protecting the myocardium. We are the first to reveal the protective effects of B. longum ZL0210 for MI via activation of the PI3K/Akt/eNOS pathway through TRAIL.
期刊介绍:
Bioscience of Microbiota, Food and Health (BMFH) is a peer-reviewed scientific journal with a specific area of focus: intestinal microbiota of human and animals, lactic acid bacteria (LAB) and food immunology and food function. BMFH contains Full papers, Notes, Reviews and Letters to the editor in all areas dealing with intestinal microbiota, LAB and food immunology and food function. BMFH takes a multidisciplinary approach and focuses on a broad spectrum of issues.