Artificial Cells, Nanomedicine, and Biotechnology最新文献

筛选
英文 中文
Exploring the anticancer and antioxidant potential of gold nanoparticles synthesized from Pterocarpus marsupium bark extract against oral squamous cell carcinoma. 探讨紫檀树皮提取物合成的金纳米粒子对口腔鳞状细胞癌的抗癌和抗氧化潜力
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-10-25 DOI: 10.1080/21691401.2024.2416951
Smrutipragnya Samal, Rajesh Kumar Meher, Pratyush Kumar Das, Santosh Kumar Swain, Debasmita Dubey, Mohd Shahnawaz Khan, Bigyan Ranjan Jali
{"title":"Exploring the anticancer and antioxidant potential of gold nanoparticles synthesized from <i>Pterocarpus marsupium</i> bark extract against oral squamous cell carcinoma.","authors":"Smrutipragnya Samal, Rajesh Kumar Meher, Pratyush Kumar Das, Santosh Kumar Swain, Debasmita Dubey, Mohd Shahnawaz Khan, Bigyan Ranjan Jali","doi":"10.1080/21691401.2024.2416951","DOIUrl":"https://doi.org/10.1080/21691401.2024.2416951","url":null,"abstract":"<p><p>Oral squamous cell carcinoma (OSCC) is a disease of significant concern with higher mortality rates. Conventional treatment approaches have several drawbacks, leading to the opening of new research avenues in the field of nanoparticle-based cancer therapeutics. The study aimed at the synthesis of gold nanoparticles (Pm-AuNPs) from the aqueous bark extract of <i>Pterocarpus marsupium</i>, followed by its characterization and <i>in vitro</i> anticancer evaluation against OSCC. The synthesized Pm-AuNPs were characterized using UV-visible spectroscopy, particle size analyser, zeta potential, FTIR and SEM techniques. The anticancer potential of the Pm-AuNPs was evaluated against OSCC cell lines (SCC29b, SSC154 and OECM-1) through <i>in vitro</i> assays. The IC<sub>50</sub> value was found to be 25 ± 1.2, 45 ± 1.5 and 75 ± 2.1 µg/mL for the three OSCC cell lines, elucidating Pm-AuNPs cytotoxic effects and mechanism of action. Intracellular ROS and SOX detection, mitochondrial transmembrane potential analysis and apoptosis detection were used to confirm the activity of Pm-AuNPs against OSCC. Acute toxicity studies on Wistar rats confirmed the non-toxic nature of the Pm-AuNPs at a higher dose concentration up to 2000 mg/kg body weight. The findings underscore Pm-AuNPs as promising candidates for future anticancer therapeutics, providing insights into their mechanism of action and therapeutic efficacy against OSCC.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"512-528"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three musketeers of PDA-based MRI contrasting and therapy. 基于 PDA 的磁共振成像对比和治疗三剑客。
IF 5.8 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-05-25 DOI: 10.1080/21691401.2024.2356773
Magdalena J Bigaj-Józefowska, Tomasz Zalewski, Karol Załęski, Emerson Coy, Marcin Frankowski, Radosław Mrówczyński, Bartosz F Grześkowiak
{"title":"Three musketeers of PDA-based MRI contrasting and therapy.","authors":"Magdalena J Bigaj-Józefowska, Tomasz Zalewski, Karol Załęski, Emerson Coy, Marcin Frankowski, Radosław Mrówczyński, Bartosz F Grześkowiak","doi":"10.1080/21691401.2024.2356773","DOIUrl":"https://doi.org/10.1080/21691401.2024.2356773","url":null,"abstract":"<p><p>Polydopamine (PDA) stands as a versatile material explored in cancer nanomedicine for its unique properties, offering opportunities for multifunctional drug delivery platforms. This study explores the potential of utilizing a one-pot synthesis to concurrently integrate Fe, Gd and Mn ions into porous PDA-based theranostic drug delivery platforms called Ferritis, Gadolinis and Manganis, respectively. Our investigation spans the morphology, magnetic properties, photothermal characteristics and cytotoxicity profiles of those potent nanoformulations. The obtained structures showcase a spherical morphology, robust magnetic response and promising photothermal behaviour. All of the presented nanoparticles (NPs) display pronounced paramagnetism, revealing contrasting potential for MRI imaging. Relaxivity values, a key determinant of contrast efficacy, demonstrated competitive or superior performance compared to established, used contrasting agents. These nanoformulations also exhibited robust photothermal properties under near infra-red irradiation, showcasing their possible application for photothermal therapy of cancer. Our findings provide insights into the potential of metal-doped PDA NPs for cancer theranostics.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"321-333"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The identification of metabolites from gut microbiota in coronary heart disease via network pharmacology. 通过网络药理学鉴定冠心病中肠道微生物群的代谢物。
IF 5.8 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-02-27 DOI: 10.1080/21691401.2024.2319827
Hao-Ming Zhou, Xin-Yu Yang, Shi-Jun Yue, Wen-Xiao Wang, Qiao Zhang, Ding-Qiao Xu, Jia-Jia Li, Yu-Ping Tang
{"title":"The identification of metabolites from gut microbiota in coronary heart disease via network pharmacology.","authors":"Hao-Ming Zhou, Xin-Yu Yang, Shi-Jun Yue, Wen-Xiao Wang, Qiao Zhang, Ding-Qiao Xu, Jia-Jia Li, Yu-Ping Tang","doi":"10.1080/21691401.2024.2319827","DOIUrl":"10.1080/21691401.2024.2319827","url":null,"abstract":"<p><p>Although the gut microbial metabolites exhibit potential effects on coronary heart disease (CHD), the underlying mechanism remains unclear. In this study, the active gut microbial metabolites acting on CHD and their potential mechanisms of action were explored through a network pharmacological approach. We collected a total of 208 metabolites from the gutMgene database and 726 overlapping targets from the similarity ensemble approach (SEA) and SwissTargetPrediction (STP) database, and ultimately identified 610 targets relevant to CHD. In conjunction with the gutMGene database, we identified 12 key targets. The targets of exogenous substances were removed, and 10 core targets involved in CHD were eventually retained. The microbiota-metabolites-targets-signalling pathways network analysis revealed that C-type lectin receptor signalling pathway, Lachnospiraceae, Escherichia, mitogen-activated protein kinase 1, prostaglandin-endoperoxidase synthase 2, phenylacetylglutamine and alcoholic acid are notable components of CHD and play important roles in the development of CHD. The results of molecular docking experiments demonstrated that AKT1-glycocholic acid and PTGS2-phenylacetylglutamine complexes may act on C-type lectin receptor signalling pathways. In this study, the key substances and potential mechanisms of gut microbial metabolites were analysed via network pharmacological methods, and a scientific basis and comprehensive idea were provided for the effects of gut microbial metabolites on CHD.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"145-155"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139982243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green synthesized silver nanoparticles of Terminalia bellirica leaves extract: synthesis, characterization, in-silico studies, and antimalarial activity. 槟榔叶提取物的绿色合成银纳米粒子:合成、表征、硅内研究和抗疟活性。
IF 5.8 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-05-02 DOI: 10.1080/21691401.2024.2339429
Sujeet Singh, Hemant Arya, Welka Sahu, K Sony Reddy, Surendra Nimesh, Bader Saud Alotaibi, Mohammed Ageeli Hakami, Hassan H Almasoudi, Khater Balatone Gezira Hessien, Mohammad Raghibul Hasan, Summya Rashid, Tarun Kumar Bhatt
{"title":"Green synthesized silver nanoparticles of <i>Terminalia bellirica</i> leaves extract: synthesis, characterization, <i>in-silico</i> studies, and antimalarial activity.","authors":"Sujeet Singh, Hemant Arya, Welka Sahu, K Sony Reddy, Surendra Nimesh, Bader Saud Alotaibi, Mohammed Ageeli Hakami, Hassan H Almasoudi, Khater Balatone Gezira Hessien, Mohammad Raghibul Hasan, Summya Rashid, Tarun Kumar Bhatt","doi":"10.1080/21691401.2024.2339429","DOIUrl":"https://doi.org/10.1080/21691401.2024.2339429","url":null,"abstract":"<p><p>Malaria is a mosquito-borne infectious disease that is caused by the <i>Plasmodium</i> parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria. Green silver nanoparticles (AgNPs) have recently attracted a lot of attention in biomedical research. As a result, green mediated AgNPs from leaves of <i>Terminalia bellirica</i>, a medicinal plant with purported antimalarial effects, were used in this investigation. Initially, cysteine-rich proteins from <i>Plasmodium</i> species were studied <i>in silico</i> as potential therapeutic targets. With docking scores between -9.93 and -11.25 kcal/mol, four leaf constituents of <i>Terminalia bellirica</i> were identified. The green mediated silver nanoparticles were afterward produced using leaf extract and were further examined using UV-vis spectrophotometer, DLS, Zeta potential, FTIR, XRD, and FESEM. The size of synthesized TBL-AgNPs was validated by the FESEM results; the average size of TBL-AgNPs was around 44.05 nm. The zeta potential study also supported green mediated AgNPs stability. Additionally, <i>Plasmodium falciparum</i> (3D7) cultures were used to assess the antimalarial efficacy, and green mediated AgNPs could effectively inhibit the parasitized red blood cells (pRBCs). In conclusion, this novel class of AgNPs may be used as a potential therapeutic replacement for the treatment of malaria.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"238-249"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in nanotechnology-assisted photodynamic therapy for neurological disorders: a comprehensive review. 纳米技术辅助光动力疗法治疗神经系统疾病的进展:综述。
IF 5.8 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-01-18 DOI: 10.1080/21691401.2024.2304814
Abdul Nasir, Mujeeb Ur Rehman, Tamreez Khan, Mansoor Husn, Manzar Khan, Ahmad Khan, Abdifatah Mohamed Nuh, Wei Jiang, Hafiz Muhammad Umer Farooqi, Qain Bai
{"title":"Advances in nanotechnology-assisted photodynamic therapy for neurological disorders: a comprehensive review.","authors":"Abdul Nasir, Mujeeb Ur Rehman, Tamreez Khan, Mansoor Husn, Manzar Khan, Ahmad Khan, Abdifatah Mohamed Nuh, Wei Jiang, Hafiz Muhammad Umer Farooqi, Qain Bai","doi":"10.1080/21691401.2024.2304814","DOIUrl":"10.1080/21691401.2024.2304814","url":null,"abstract":"<p><p>Neurological disorders such as neurodegenerative diseases and nervous system tumours affect more than one billion people throughout the globe. The physiological sensitivity of the nervous tissue limits the application of invasive therapies and leads to poor treatment and prognosis. One promising solution that has generated attention is Photodynamic therapy (PDT), which can potentially revolutionise the treatment landscape for neurological disorders. PDT attracted substantial recognition for anticancer efficacy and drug conjugation for targeted drug delivery. This review thoroughly explained the basic principles of PDT, scientific interventions and advances in PDT, and their complicated mechanism in treating brain-related pathologies. Furthermore, the merits and demerits of PDT in the context of neurological disorders offer a well-rounded perspective on its feasibility and challenges. In conclusion, this review encapsulates the significant potential of PDT in transforming the treatment landscape for neurological disorders, emphasising its role as a non-invasive, targeted therapeutic approach with multifaceted applications.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"84-103"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139485073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Factors affecting response variables with emphasis on drug release and loading for optimization of liposomes. 影响响应变量的因素,重点是优化脂质体的药物释放和负载。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-06-04 DOI: 10.1080/21691401.2024.2360634
Shantanu Pande
{"title":"Factors affecting response variables with emphasis on drug release and loading for optimization of liposomes.","authors":"Shantanu Pande","doi":"10.1080/21691401.2024.2360634","DOIUrl":"10.1080/21691401.2024.2360634","url":null,"abstract":"<p><p>Drug delivery through Liposomes has shown tremendous potential in terms of the therapeutic application of nanoparticles. There are several drug-loaded liposomal formulations approved for clinical use that help mitigate harmful effects of life-threatening diseases. Developments in the field of liposomal formulations and drug delivery have made it possible for clinicians and researchers to find therapeutic solutions for complicated medical conditions. A key aspect in the development of drug-loaded liposomes is a careful review of optimization techniques to improve the overall formulation stability and efficacy. Optimization studies help in improving/modulating the various properties of drug-loaded liposomes and are vital for the development of this class of delivery systems. A comprehensive overview of the various process variables and factors involved in the optimization of drug-loaded liposomes is presented in this review. The influence of different independent variables on drug release and loading properties with the application of a statistical experimental design is also explained in this article.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"334-344"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141247197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of Concern. 表达关切。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-09-09 DOI: 10.1080/21691401.2024.2396729
{"title":"Expression of Concern.","authors":"","doi":"10.1080/21691401.2024.2396729","DOIUrl":"https://doi.org/10.1080/21691401.2024.2396729","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"437"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-throughput single-cell screening of viable hybridomas and patient-derived antibody-secreting cells using punchable microwells. 使用可打孔微孔对有活力的杂交瘤和源自患者的抗体分泌细胞进行高通量单细胞筛选。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-08-29 DOI: 10.1080/21691401.2024.2395815
Kaat Rubben, Ann-Sophie Vander Plaetsen, Ruben Almey, Olivier Tytgat, Koen Deserranno, Jamie Debaere, Delphine Diana Acar, Philip Meuleman, Dieter Deforce, Filip Van Nieuwerburgh
{"title":"High-throughput single-cell screening of viable hybridomas and patient-derived antibody-secreting cells using punchable microwells.","authors":"Kaat Rubben, Ann-Sophie Vander Plaetsen, Ruben Almey, Olivier Tytgat, Koen Deserranno, Jamie Debaere, Delphine Diana Acar, Philip Meuleman, Dieter Deforce, Filip Van Nieuwerburgh","doi":"10.1080/21691401.2024.2395815","DOIUrl":"https://doi.org/10.1080/21691401.2024.2395815","url":null,"abstract":"<p><p>Monoclonal antibodies (mAbs) hold significant potential as therapeutic agents and are invaluable tools in biomedical research. However, the lack of efficient high-throughput screening methods for single antibody-secreting cells (ASCs) has limited the diversity of available antibodies. Here, we introduce a novel, integrated workflow employing self-seeding microwells and an automated microscope-puncher system for the swift, high-throughput screening and isolation of single ASCs. The system allows for the individual screening and isolation of up to 6,400 cells within approximately one day, with the opportunity for parallelization and efficient upscaling. We successfully applied this workflow to both hybridomas and human patient-derived B cells, enabling subsequent clonal expansion or antibody sequence analysis through an optimized, single-cell nested reverse transcription-polymerase chain reaction (RT-PCR) procedure. By providing a time-efficient and more streamlined single ASC screening and isolation process, our workflow holds promise for driving forward progress in mAb development.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"426-436"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of titanium dioxide nanoparticles from Solanum Tuberosum peel extract and its applications. 从茄属植物果皮提取物中制备二氧化钛纳米粒子及其应用。
IF 5.8 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-01-12 DOI: 10.1080/21691401.2023.2301068
Agnishwar Girigoswami, Balasubramanian Deepika, Ashok Kumar Pandurangan, Koyeli Girigoswami
{"title":"Preparation of titanium dioxide nanoparticles from <i>Solanum Tuberosum</i> peel extract and its applications.","authors":"Agnishwar Girigoswami, Balasubramanian Deepika, Ashok Kumar Pandurangan, Koyeli Girigoswami","doi":"10.1080/21691401.2023.2301068","DOIUrl":"10.1080/21691401.2023.2301068","url":null,"abstract":"<p><p>The present study describes a method for the preparation of green titanium dioxide (TiO<sub>2</sub>) nanoparticles from the peel of <i>Solanum tuberosum</i>, commonly known as potato, and the potato peel being a kitchen waste. The green synthesized TiO<sub>2</sub> (G- TiO<sub>2</sub>) nanoparticles were characterized using UV-visible spectroscopy, dynamic light scattering, scanning electron microscopy, TEM, XRD, and FTIR spectroscopy. The photocatalytic activity of the G- TiO<sub>2</sub> nanoparticles was also shown using the dye bromophenol blue. To explore the biocompatibility of the G- TiO<sub>2</sub>, the cell viability in normal as well as cancer cells was assessed. Further, the <i>in vivo</i> toxicity of the G- TiO<sub>2</sub> nanoparticles was assessed using zebrafish embryos. The novelty of the present invention is to utilize kitchen waste for a useful purpose for the synthesis of titanium dioxide nanoparticles which is known to have UV light scavenging properties. Moreover, the potato peel is a natural antioxidant and possesses a skin-lightening effect. A combination of the potato peel extract and titanium dioxide prepared using the extract will have a combinatorial effect for protecting UV light exposure to the skin and lightening the skin colour.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"59-68"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139429421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zingiberis rhizoma-based carbon dots alter serum oestradiol and follicle-stimulating hormone levels in female mice. 以姜黄根茎为基础的碳点改变雌性小鼠血清雌二醇和促卵泡激素水平。
IF 5.8 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2023-11-23 DOI: 10.1080/21691401.2023.2276770
Yumin Chen, Xue Bai, Ying Zhang, Yafang Zhao, Huagen Ma, Yunbo Yang, Meijun Wang, Yinghui Guo, Xiaopeng Li, Tong Wu, Yue Zhang, Hui Kong, Yan Zhao, Huaihua Qu
{"title":"<i>Zingiberis rhizoma</i>-based carbon dots alter serum oestradiol and follicle-stimulating hormone levels in female mice.","authors":"Yumin Chen, Xue Bai, Ying Zhang, Yafang Zhao, Huagen Ma, Yunbo Yang, Meijun Wang, Yinghui Guo, Xiaopeng Li, Tong Wu, Yue Zhang, Hui Kong, Yan Zhao, Huaihua Qu","doi":"10.1080/21691401.2023.2276770","DOIUrl":"10.1080/21691401.2023.2276770","url":null,"abstract":"<p><p>Chinese herbs contain substances that regulate female hormones. Our study confirmed that <i>Zingiberis rhizoma carbonisata</i> contains <i>Zingiberis rhizoma</i>-based carbon dots (ZR-CDs), which exert regulatory effects on serum oestradiol and FSH in mice and show impacts on endometrial growth and follicular development that potentially affect the ability of female fertility. ZR-CDs were characterized to clarify the microstructure, optical features, and functional group characteristics. It shows that ZR-CDs are spherical carbon nanostructures ranging from 0.97 to 2.3 nm in diameter, with fluorescent properties and a surface rich in functional groups. We further investigated the impact of ZR-CDs on oestradiol and FSH in serum, growth, and the development of ovarian and uterine using normal female mice and exogenous oestradiol intervention model. It was observed that ZR-CDs accelerated oestrogen metabolism and attenuated oestradiol-induced endometrial hyperplasia. Simultaneously, ZR-CDs triggered an increase in FSH, even in the presence of high-serum oestradiol that inhibits FSH secretion. Our findings suggest that ZR-CDs could be a potential therapeutic treatment for anovulatory menstruation.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"12-22"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138294566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信