Taufik Muhammad Fakih, Farendina Suarantika, Aulia Fikri Hidayat, Dwi Syah Fitra Ramadhan, Muchtaridi Muchtaridi
{"title":"虚拟筛选、分子对接和分子动力学模拟为RNA聚合酶抑制抗结核药物的发现提供了新的思路。","authors":"Taufik Muhammad Fakih, Farendina Suarantika, Aulia Fikri Hidayat, Dwi Syah Fitra Ramadhan, Muchtaridi Muchtaridi","doi":"10.1080/21691401.2025.2531748","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to identify potential RNA polymerase (RNAP) inhibitors using a comprehensive computational approach, addressing the challenges in drug discovery related to stability, affinity, and accurate binding predictions.</p><p><strong>Patients and methods: </strong>The research workflow involved virtual screening to narrow down candidate compounds, molecular docking to predict optimal binding poses, molecular dynamics (MD) simulations to evaluate interaction stability over time, and MM-PBSA analysis to calculate binding energies. These steps ensured that only compounds with strong and stable binding profiles were selected for further evaluation.</p><p><strong>Results: </strong>The selected compounds, ZINC001286671821, ZINC000253654686, and ZINC000252693842, demonstrated varying degrees of stability and affinity. MM-PBSA analysis revealed that ZINC000252693842 had the most favourable binding energy at -106.097 ± 24.664 kJ/mol, followed by ZINC001286671821 at -89.201 ± 22.647 kJ/mol, and ZINC000253654686 at -43.832 ± 23.748 kJ/mol. Van der Waals forces were the main contributors to stability, with values of -221.032 ± 27.721 kJ/mol, -187.136 ± 23.796 kJ/mol, and -157.232 ± 19.676 kJ/mol, respectively. These findings confirm the strong binding potential of ZINC000252693842 as an RNAP inhibitor.</p><p><strong>Conclusion: </strong>This study highlights the effectiveness of combining virtual screening, molecular docking, MD simulations, and MM-PBSA analysis in identifying promising RNAP inhibitors. The results establish a strong foundation for further experimental validation, advancing the development of effective therapeutic agents targeting RNA polymerase.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"304-325"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual screening, molecular docking, and molecular dynamics simulation reveal new insights into RNA polymerase inhibition for anti-tuberculosis drug discovery.\",\"authors\":\"Taufik Muhammad Fakih, Farendina Suarantika, Aulia Fikri Hidayat, Dwi Syah Fitra Ramadhan, Muchtaridi Muchtaridi\",\"doi\":\"10.1080/21691401.2025.2531748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aims to identify potential RNA polymerase (RNAP) inhibitors using a comprehensive computational approach, addressing the challenges in drug discovery related to stability, affinity, and accurate binding predictions.</p><p><strong>Patients and methods: </strong>The research workflow involved virtual screening to narrow down candidate compounds, molecular docking to predict optimal binding poses, molecular dynamics (MD) simulations to evaluate interaction stability over time, and MM-PBSA analysis to calculate binding energies. These steps ensured that only compounds with strong and stable binding profiles were selected for further evaluation.</p><p><strong>Results: </strong>The selected compounds, ZINC001286671821, ZINC000253654686, and ZINC000252693842, demonstrated varying degrees of stability and affinity. MM-PBSA analysis revealed that ZINC000252693842 had the most favourable binding energy at -106.097 ± 24.664 kJ/mol, followed by ZINC001286671821 at -89.201 ± 22.647 kJ/mol, and ZINC000253654686 at -43.832 ± 23.748 kJ/mol. Van der Waals forces were the main contributors to stability, with values of -221.032 ± 27.721 kJ/mol, -187.136 ± 23.796 kJ/mol, and -157.232 ± 19.676 kJ/mol, respectively. These findings confirm the strong binding potential of ZINC000252693842 as an RNAP inhibitor.</p><p><strong>Conclusion: </strong>This study highlights the effectiveness of combining virtual screening, molecular docking, MD simulations, and MM-PBSA analysis in identifying promising RNAP inhibitors. The results establish a strong foundation for further experimental validation, advancing the development of effective therapeutic agents targeting RNA polymerase.</p>\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\"53 1\",\"pages\":\"304-325\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2025.2531748\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2025.2531748","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Virtual screening, molecular docking, and molecular dynamics simulation reveal new insights into RNA polymerase inhibition for anti-tuberculosis drug discovery.
Purpose: This study aims to identify potential RNA polymerase (RNAP) inhibitors using a comprehensive computational approach, addressing the challenges in drug discovery related to stability, affinity, and accurate binding predictions.
Patients and methods: The research workflow involved virtual screening to narrow down candidate compounds, molecular docking to predict optimal binding poses, molecular dynamics (MD) simulations to evaluate interaction stability over time, and MM-PBSA analysis to calculate binding energies. These steps ensured that only compounds with strong and stable binding profiles were selected for further evaluation.
Results: The selected compounds, ZINC001286671821, ZINC000253654686, and ZINC000252693842, demonstrated varying degrees of stability and affinity. MM-PBSA analysis revealed that ZINC000252693842 had the most favourable binding energy at -106.097 ± 24.664 kJ/mol, followed by ZINC001286671821 at -89.201 ± 22.647 kJ/mol, and ZINC000253654686 at -43.832 ± 23.748 kJ/mol. Van der Waals forces were the main contributors to stability, with values of -221.032 ± 27.721 kJ/mol, -187.136 ± 23.796 kJ/mol, and -157.232 ± 19.676 kJ/mol, respectively. These findings confirm the strong binding potential of ZINC000252693842 as an RNAP inhibitor.
Conclusion: This study highlights the effectiveness of combining virtual screening, molecular docking, MD simulations, and MM-PBSA analysis in identifying promising RNAP inhibitors. The results establish a strong foundation for further experimental validation, advancing the development of effective therapeutic agents targeting RNA polymerase.
期刊介绍:
Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.