{"title":"纳米血红蛋白基氧载体增加非小细胞肺癌的放射敏感性。","authors":"Changmin Liu, Yong Li, Shanhui Feng, Xiaoran Lv, Fengjuan Li, Binglou Wong, Jiaxin Liu, Chengmin Yang","doi":"10.1080/21691401.2025.2503369","DOIUrl":null,"url":null,"abstract":"<p><p>Haemoglobin-based oxygen carriers (HBOCs) could improve the hypoxic state of non-small-cell lung cancer (NSCLC) and increase radiotherapy sensitivity. We assessed the <i>in vitro</i> effects of nano-HBOC + irradiation therapy (IR) on NSCLC cells and the <i>in vivo</i> effect on a mouse model. H385 human NSCLC cell line was used to evaluate the nano-HBOC effect + IR on the cellular partial pressure of oxygen (pO<sub>2</sub>), cell activity and changes in reactive oxygen species (ROS) 1-2 h post-exposure. An NSCLC tumour-bearing mouse model was established to evaluate nano-HBOC+IR efficacy 28 d post-exposure. <i>In vitro</i>, pO<sub>2</sub> tended to increase in nano-HBOC groups <i>versus</i> control, cell activity decreased (<i>p</i> < 0.01) and ROS level increased (<i>p</i> < 0.05). Post-irradiation, pO<sub>2</sub> increased in nano-HBOC+IR groups <i>versus</i> control (<i>p</i> < 0.01), viability decreased (<i>p</i> < 0.01) and ROS increased (<i>p</i> < 0.01). No significant difference between nano-HBOC groups was observed. <i>In vivo</i>, nano-HBOC was most abundant at the tumour site and pO<sub>2</sub> increased 6 h post-injection (<i>p</i> > 0.05). Tumour size was smaller in the IR and nano-HBOC+IR groups <i>versus</i> control. ROS levels and cell death were significantly increased. Nano-HBOC can improve pO<sub>2</sub>, enhance radiotherapy's inhibitory ability on NSCLC cell lines and tumour-bearing mouse models, and promote ROS release.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"244-252"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-haemoglobin-based oxygen carrier increases the radiosensitivity of non-small-cell lung cancer.\",\"authors\":\"Changmin Liu, Yong Li, Shanhui Feng, Xiaoran Lv, Fengjuan Li, Binglou Wong, Jiaxin Liu, Chengmin Yang\",\"doi\":\"10.1080/21691401.2025.2503369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Haemoglobin-based oxygen carriers (HBOCs) could improve the hypoxic state of non-small-cell lung cancer (NSCLC) and increase radiotherapy sensitivity. We assessed the <i>in vitro</i> effects of nano-HBOC + irradiation therapy (IR) on NSCLC cells and the <i>in vivo</i> effect on a mouse model. H385 human NSCLC cell line was used to evaluate the nano-HBOC effect + IR on the cellular partial pressure of oxygen (pO<sub>2</sub>), cell activity and changes in reactive oxygen species (ROS) 1-2 h post-exposure. An NSCLC tumour-bearing mouse model was established to evaluate nano-HBOC+IR efficacy 28 d post-exposure. <i>In vitro</i>, pO<sub>2</sub> tended to increase in nano-HBOC groups <i>versus</i> control, cell activity decreased (<i>p</i> < 0.01) and ROS level increased (<i>p</i> < 0.05). Post-irradiation, pO<sub>2</sub> increased in nano-HBOC+IR groups <i>versus</i> control (<i>p</i> < 0.01), viability decreased (<i>p</i> < 0.01) and ROS increased (<i>p</i> < 0.01). No significant difference between nano-HBOC groups was observed. <i>In vivo</i>, nano-HBOC was most abundant at the tumour site and pO<sub>2</sub> increased 6 h post-injection (<i>p</i> > 0.05). Tumour size was smaller in the IR and nano-HBOC+IR groups <i>versus</i> control. ROS levels and cell death were significantly increased. Nano-HBOC can improve pO<sub>2</sub>, enhance radiotherapy's inhibitory ability on NSCLC cell lines and tumour-bearing mouse models, and promote ROS release.</p>\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\"53 1\",\"pages\":\"244-252\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2025.2503369\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2025.2503369","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Nano-haemoglobin-based oxygen carrier increases the radiosensitivity of non-small-cell lung cancer.
Haemoglobin-based oxygen carriers (HBOCs) could improve the hypoxic state of non-small-cell lung cancer (NSCLC) and increase radiotherapy sensitivity. We assessed the in vitro effects of nano-HBOC + irradiation therapy (IR) on NSCLC cells and the in vivo effect on a mouse model. H385 human NSCLC cell line was used to evaluate the nano-HBOC effect + IR on the cellular partial pressure of oxygen (pO2), cell activity and changes in reactive oxygen species (ROS) 1-2 h post-exposure. An NSCLC tumour-bearing mouse model was established to evaluate nano-HBOC+IR efficacy 28 d post-exposure. In vitro, pO2 tended to increase in nano-HBOC groups versus control, cell activity decreased (p < 0.01) and ROS level increased (p < 0.05). Post-irradiation, pO2 increased in nano-HBOC+IR groups versus control (p < 0.01), viability decreased (p < 0.01) and ROS increased (p < 0.01). No significant difference between nano-HBOC groups was observed. In vivo, nano-HBOC was most abundant at the tumour site and pO2 increased 6 h post-injection (p > 0.05). Tumour size was smaller in the IR and nano-HBOC+IR groups versus control. ROS levels and cell death were significantly increased. Nano-HBOC can improve pO2, enhance radiotherapy's inhibitory ability on NSCLC cell lines and tumour-bearing mouse models, and promote ROS release.
期刊介绍:
Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.