Antibacterial lipid liquid crystalline nanoparticles - synthesis and optimization by central composite design.

IF 4.5 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jakub Jagielski, Karolina Dydak, Kaja Jaskot, Dmytro Soloviov, Maciej Kozak, Grzegorz Nowaczyk
{"title":"Antibacterial lipid liquid crystalline nanoparticles - synthesis and optimization by central composite design.","authors":"Jakub Jagielski, Karolina Dydak, Kaja Jaskot, Dmytro Soloviov, Maciej Kozak, Grzegorz Nowaczyk","doi":"10.1080/21691401.2025.2472928","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of antibiotic-resistant bacteria demands new antimicrobial strategies. Glyceryl monolaurate (GML) shows antibacterial activity against Gram-positive bacteria like <i>S. aureus</i> but is ineffective against Gram-negative <i>E. coli</i> due to its outer membrane. GML's limited solubility and susceptibility to bacterial lipases hinder its direct use. This study developed glyceryl monooleate (GMO) lipid liquid crystalline nanoparticles (LLCNPs) incorporating GML to enhance its stability and efficacy. Using a central composite design (CCD), an optimal GMO:GML:F127 mass ratio of 26.5:3.5:1.5 was achieved. Characterization via dynamic light scattering (DLS), small angle X-ray scattering (SAXS), and cryo-transmission electron microscopy (cryo-TEM) confirmed the formation of bicontinuous cubic phase nanoparticles (<i>Pn3m</i> space group) with hydrophobic, hydrophilic, and amphiphilic regions, enabling the incorporation of diverse agents and the presence of sponge-like nanoparticles. The optimized LLCNPs inhibited <i>S. aureus</i> growth at concentrations ≥10 µg/mL by disrupting its membrane potential but showed no activity against <i>E. coli.</i> Cytotoxicity studies indicated that GML incorporation did not significantly affect cell viability compared to pure GMO LLCNPs. This nanoparticle system offers a biocompatible solution for treating Gram-positive bacterial infections and may synergize with existing antibiotics, warranting further investigation into its mechanisms and therapeutic potential.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"69-86"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2025.2472928","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of antibiotic-resistant bacteria demands new antimicrobial strategies. Glyceryl monolaurate (GML) shows antibacterial activity against Gram-positive bacteria like S. aureus but is ineffective against Gram-negative E. coli due to its outer membrane. GML's limited solubility and susceptibility to bacterial lipases hinder its direct use. This study developed glyceryl monooleate (GMO) lipid liquid crystalline nanoparticles (LLCNPs) incorporating GML to enhance its stability and efficacy. Using a central composite design (CCD), an optimal GMO:GML:F127 mass ratio of 26.5:3.5:1.5 was achieved. Characterization via dynamic light scattering (DLS), small angle X-ray scattering (SAXS), and cryo-transmission electron microscopy (cryo-TEM) confirmed the formation of bicontinuous cubic phase nanoparticles (Pn3m space group) with hydrophobic, hydrophilic, and amphiphilic regions, enabling the incorporation of diverse agents and the presence of sponge-like nanoparticles. The optimized LLCNPs inhibited S. aureus growth at concentrations ≥10 µg/mL by disrupting its membrane potential but showed no activity against E. coli. Cytotoxicity studies indicated that GML incorporation did not significantly affect cell viability compared to pure GMO LLCNPs. This nanoparticle system offers a biocompatible solution for treating Gram-positive bacterial infections and may synergize with existing antibiotics, warranting further investigation into its mechanisms and therapeutic potential.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Cells, Nanomedicine, and Biotechnology
Artificial Cells, Nanomedicine, and Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ENGINEERING, BIOMEDICAL
CiteScore
10.90
自引率
0.00%
发文量
48
审稿时长
20 weeks
期刊介绍: Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信