Vitamin D3 loaded polycaprolactone nanoparticles enhance the expression of the antimicrobial peptide cathelicidin in macrophages.

IF 4.5 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Prince N Dlozi, Rami Ahmed, Star Khoza, Admire Dube
{"title":"Vitamin D3 loaded polycaprolactone nanoparticles enhance the expression of the antimicrobial peptide cathelicidin in macrophages.","authors":"Prince N Dlozi, Rami Ahmed, Star Khoza, Admire Dube","doi":"10.1080/21691401.2025.2499515","DOIUrl":null,"url":null,"abstract":"<p><p>Tuberculosis (TB), primarily caused by <i>Mycobacterium tuberculosis</i>, remains a global health burden. Current antibiotic treatments are limited by adverse effects, poor adherence, and drug resistance, necessitating new therapeutic approaches. Recent studies highlight the role of vitamin D3 (VD3) in enhancing host immune responses against the mycobacterium <i>via</i> cathelicidin (an antimicrobial peptide) and autophagy activation. In this study, VD3-loaded poly-ƹ-caprolactone (PCL) nanoparticles (NPs) were synthesized to enhance cathelicidin expression in macrophages. NPs containing cholecalciferol, calcifediol, and calcitriol were synthesized using an emulsification solvent-evaporation technique. Average sizes of synthesized NPs ranged from 304.7 to 458.7 nm, with polydispersity index (PDI) and zeta potential (ZP) ranging from 0.103 to 0.257 and -17.3 to -7.47 mV, respectively. Encapsulation efficiencies were 9.68%, 10.99%, and 19.28% for cholecalciferol, calcifediol, and calcitriol, respectively. VD3-encapsulated NPs stimulated a dose-dependent increase in cathelicidin expression in THP-1 macrophages. Encapsulated calcifediol and calcitriol (100 ng/ml) induced the expression of 243.46 ng/ml ± 4.55 ng/ml and 396.67 ng/ml ± 25.24 ng/ml of cathelicidin, respectively, which was significantly higher than that induced by the free drugs. These findings suggest that NP encapsulation may offer a more efficient approach to using vitamin D3 for inducing cathelicidin expression as a host-directed treatment for TB.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"207-219"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12057764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2025.2499515","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tuberculosis (TB), primarily caused by Mycobacterium tuberculosis, remains a global health burden. Current antibiotic treatments are limited by adverse effects, poor adherence, and drug resistance, necessitating new therapeutic approaches. Recent studies highlight the role of vitamin D3 (VD3) in enhancing host immune responses against the mycobacterium via cathelicidin (an antimicrobial peptide) and autophagy activation. In this study, VD3-loaded poly-ƹ-caprolactone (PCL) nanoparticles (NPs) were synthesized to enhance cathelicidin expression in macrophages. NPs containing cholecalciferol, calcifediol, and calcitriol were synthesized using an emulsification solvent-evaporation technique. Average sizes of synthesized NPs ranged from 304.7 to 458.7 nm, with polydispersity index (PDI) and zeta potential (ZP) ranging from 0.103 to 0.257 and -17.3 to -7.47 mV, respectively. Encapsulation efficiencies were 9.68%, 10.99%, and 19.28% for cholecalciferol, calcifediol, and calcitriol, respectively. VD3-encapsulated NPs stimulated a dose-dependent increase in cathelicidin expression in THP-1 macrophages. Encapsulated calcifediol and calcitriol (100 ng/ml) induced the expression of 243.46 ng/ml ± 4.55 ng/ml and 396.67 ng/ml ± 25.24 ng/ml of cathelicidin, respectively, which was significantly higher than that induced by the free drugs. These findings suggest that NP encapsulation may offer a more efficient approach to using vitamin D3 for inducing cathelicidin expression as a host-directed treatment for TB.

维生素D3负载的聚己内酯纳米颗粒增强巨噬细胞中抗菌肽抗菌肽的表达。
结核病主要由结核分枝杆菌引起,仍然是全球卫生负担。目前的抗生素治疗受到不良反应,依从性差和耐药性的限制,需要新的治疗方法。最近的研究强调了维生素D3 (VD3)通过抗菌肽(cathelicidin)和自噬激活来增强宿主对分枝杆菌的免疫反应的作用。本研究合成了负载vd3的聚-ƹ-caprolactone (PCL)纳米颗粒(NPs)来增强巨噬细胞中抗菌肽的表达。采用乳化溶剂蒸发技术合成了含有胆骨化醇、钙化二醇和骨化三醇的NPs。合成的NPs平均尺寸为304.7 ~ 458.7 nm,多分散指数(PDI)和ZP (ZP)分别为0.103 ~ 0.257和-17.3 ~ -7.47 mV。胆骨化醇、钙化二醇和骨化三醇的包封率分别为9.68%、10.99%和19.28%。vd3包封的NPs刺激THP-1巨噬细胞中cathelicidin表达的剂量依赖性增加。包封的钙化二醇和骨化三醇(100 ng/ml)分别诱导243.46 ng/ml±4.55 ng/ml和396.67 ng/ml±25.24 ng/ml的cathelicidin表达,显著高于游离药物诱导的表达量。这些发现表明,NP包封可能提供了一种更有效的方法,利用维生素D3诱导抗菌肽表达,作为结核病的宿主导向治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Cells, Nanomedicine, and Biotechnology
Artificial Cells, Nanomedicine, and Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ENGINEERING, BIOMEDICAL
CiteScore
10.90
自引率
0.00%
发文量
48
审稿时长
20 weeks
期刊介绍: Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信