Machine learning-based integration develops a disulfidptosis-related lncRNA signature for improving outcomes in gastric cancer.

IF 4.5 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Tianze Zhang, Yuqing Chen, Zhiping Xiang
{"title":"Machine learning-based integration develops a disulfidptosis-related lncRNA signature for improving outcomes in gastric cancer.","authors":"Tianze Zhang, Yuqing Chen, Zhiping Xiang","doi":"10.1080/21691401.2024.2440415","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer remains one of the deadliest cancers globally due to delayed detection and limited treatment options, underscoring the critical need for innovative prognostic methods. Disulfidptosis, a recently discovered programmed cell death triggered by disulphide stress, presents a fresh avenue for therapeutic exploration. This research examines disulfidptosis-related long noncoding RNAs (DRLs) in gastric cancer, with the goal of leveraging these lncRNAs as potential markers to enhance patient outcomes and treatment approaches. Comprehensive genomic and clinical data from stomach adenocarcinoma (STAD) were obtained from The Cancer Genome Atlas (TCGA). Employing least absolute shrinkage and selection operator (LASSO) regression analysis, a prognostic model was devised incorporating five key DRLs to forecast survival rates. The effectiveness of this model was validated using Kaplan-Meier survival plots, receiver operating characteristic (ROC) curves, and extensive functional enrichment studies. The importance of select lncRNAs and the expression variability of genes tied to disulfidptosis were validated via quantitative real-time PCR (qRT-PCR) and Western blot tests, establishing a solid foundation for their prognostic utility. Analyses of functional enrichment and tumour mutation burden highlighted the biological importance of these DRLs, connecting them to critical cancer pathways and immune responses. These discoveries broaden our comprehension of the molecular framework of gastric cancer and bolster the development of tailored treatment plans, highlighting the substantial role of DRLs in clinical prognosis and therapeutic intervention.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"1-13"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2024.2440415","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gastric cancer remains one of the deadliest cancers globally due to delayed detection and limited treatment options, underscoring the critical need for innovative prognostic methods. Disulfidptosis, a recently discovered programmed cell death triggered by disulphide stress, presents a fresh avenue for therapeutic exploration. This research examines disulfidptosis-related long noncoding RNAs (DRLs) in gastric cancer, with the goal of leveraging these lncRNAs as potential markers to enhance patient outcomes and treatment approaches. Comprehensive genomic and clinical data from stomach adenocarcinoma (STAD) were obtained from The Cancer Genome Atlas (TCGA). Employing least absolute shrinkage and selection operator (LASSO) regression analysis, a prognostic model was devised incorporating five key DRLs to forecast survival rates. The effectiveness of this model was validated using Kaplan-Meier survival plots, receiver operating characteristic (ROC) curves, and extensive functional enrichment studies. The importance of select lncRNAs and the expression variability of genes tied to disulfidptosis were validated via quantitative real-time PCR (qRT-PCR) and Western blot tests, establishing a solid foundation for their prognostic utility. Analyses of functional enrichment and tumour mutation burden highlighted the biological importance of these DRLs, connecting them to critical cancer pathways and immune responses. These discoveries broaden our comprehension of the molecular framework of gastric cancer and bolster the development of tailored treatment plans, highlighting the substantial role of DRLs in clinical prognosis and therapeutic intervention.

基于机器学习的整合开发了一个与二硫中毒相关的lncRNA信号,以改善胃癌的预后。
由于检测延迟和治疗选择有限,胃癌仍然是全球最致命的癌症之一,强调了对创新预后方法的迫切需要。二硫细胞凋亡是最近发现的一种由二硫应激引发的程序性细胞死亡,为治疗探索提供了新的途径。本研究探讨了胃癌中与二硫分解相关的长链非编码rna (drl),目的是利用这些lncrna作为潜在的标记物来改善患者的预后和治疗方法。从癌症基因组图谱(TCGA)中获得了胃腺癌(STAD)的全面基因组和临床数据。采用最小绝对收缩和选择算子(LASSO)回归分析,设计了一个包含五个关键drl的预后模型来预测生存率。通过Kaplan-Meier生存图、受试者工作特征(ROC)曲线和广泛的功能富集研究验证了该模型的有效性。通过定量实时PCR (qRT-PCR)和Western blot测试验证了选择的lncrna的重要性和与双曲下垂相关基因的表达变异性,为其预后应用奠定了坚实的基础。功能富集和肿瘤突变负担的分析强调了这些drl的生物学重要性,将它们与关键的癌症途径和免疫反应联系起来。这些发现拓宽了我们对胃癌分子框架的理解,促进了量身定制治疗方案的发展,突出了drl在临床预后和治疗干预中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Cells, Nanomedicine, and Biotechnology
Artificial Cells, Nanomedicine, and Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ENGINEERING, BIOMEDICAL
CiteScore
10.90
自引率
0.00%
发文量
48
审稿时长
20 weeks
期刊介绍: Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信