Antioxidants最新文献

筛选
英文 中文
Particulate Matter-Induced Emerging Health Effects Associated with Oxidative Stress and Inflammation. 与氧化应激和炎症有关的颗粒物质诱发的新健康效应。
IF 6 2区 医学
Antioxidants Pub Date : 2024-10-17 DOI: 10.3390/antiox13101256
Eun Yeong Lim, Gun-Dong Kim
{"title":"Particulate Matter-Induced Emerging Health Effects Associated with Oxidative Stress and Inflammation.","authors":"Eun Yeong Lim, Gun-Dong Kim","doi":"10.3390/antiox13101256","DOIUrl":"10.3390/antiox13101256","url":null,"abstract":"<p><p>Environmental pollution continues to increase with industrial development and has become a threat to human health. Atmospheric particulate matter (PM) was designated as a Group 1 carcinogen by the International Agency for Research on Cancer in 2013 and is an emerging global environmental risk factor that is a major cause of death related to cardiovascular and respiratory diseases. PM is a complex composed of highly reactive organic matter, chemicals, and metal components, which mainly cause excessive production of reactive oxygen species (ROS) that can lead to DNA and cell damage, endoplasmic reticulum stress, inflammatory responses, atherosclerosis, and airway remodeling, contributing to an increased susceptibility to and the exacerbation of various diseases and infections. PM has various effects on human health depending on the particle size, physical and chemical characteristics, source, and exposure period. PM smaller than 5 μm can penetrate and accumulate in the alveoli and circulatory system, causing harmful effects on the respiratory system, cardiovascular system, skin, and brain. In this review, we describe the relationship and mechanism of ROS-mediated cell damage, oxidative stress, and inflammatory responses caused by PM and the health effects on major organs, as well as comprehensively discuss the harmfulness of PM.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the 3,5-Dibromo-4,6-dimethoxychalcones and Their Flavone Derivatives as Dual α-Glucosidase and α-Amylase Inhibitors with Antioxidant and Anticancer Potential. 探索具有抗氧化和抗癌潜力的 3,5-二溴-4,6-二甲氧基查耳酮及其黄酮衍生物作为α-葡萄糖苷酶和α-淀粉酶双重抑制剂的作用。
IF 6 2区 医学
Antioxidants Pub Date : 2024-10-17 DOI: 10.3390/antiox13101255
Jackson K Nkoana, Malose J Mphahlele, Garland K More, Yee Siew Choong
{"title":"Exploring the 3,5-Dibromo-4,6-dimethoxychalcones and Their Flavone Derivatives as Dual α-Glucosidase and α-Amylase Inhibitors with Antioxidant and Anticancer Potential.","authors":"Jackson K Nkoana, Malose J Mphahlele, Garland K More, Yee Siew Choong","doi":"10.3390/antiox13101255","DOIUrl":"10.3390/antiox13101255","url":null,"abstract":"<p><p>The rising levels of type 2 diabetes mellitus (T2DM) and the poor medical effects of the commercially available antidiabetic drugs necessitate the development of potent analogs to treat this multifactorial metabolic disorder. It has been demonstrated that targeting two or more biochemical targets associated with the onset and progression of diabetes along with oxidative stress and/or cancer could be a significant strategy for treating complications related to this metabolic disorder. The 3,5-dibromo-4,6-dimethoxychalcones (<b>2a</b>-<b>f</b>) and the corresponding flavone derivatives (<b>3a</b>-<b>f</b>) were synthesized and characterized using spectroscopic (NMR, HR-MS and FT-IR) techniques. The inhibitory effect of both series of compounds against α-glucosidase and α-amylase was evaluated in vitro through enzymatic assays. Selected compounds were also evaluated for potential to activate or inhibit superoxide dismutase. Compound <b>3c</b> was selected as a representative model for the flavone series and evaluated spectrophotometrically for potential to coordinate Cu(II) and/or Zn(II) ions implicated in the metal-catalyzed free radical generation. A plausible mechanism for metal-chelation of the test compounds is presented. Furthermore, the most active compounds from each series against the test carbohydrate-hydrolyzing enzymes were selected and evaluated for their antigrowth effect on the human breast (MCF-7) and lung (A549) cancer cell lines and for cytotoxicity against the African Green Monkey kidney (Vero) cell line. The parent chalcone <b>2a</b> and flavone derivatives <b>3a</b>, <b>3c</b> and <b>3e</b> exhibited relatively high inhibitory activity against the MCF-7 cells with IC<sub>50</sub> values of 4.12 ± 0.55, 8.50 ± 0.82, 5.10 ± 0.61 and 6.96 ± 0.66 μM, respectively. The chalcones <b>2a</b> and <b>2c</b> exhibited significant cytotoxicity against the A549 cells with IC<sub>50</sub> values of 7.40 ± 0.67 and 9.68 ± 0.80 μM, respectively. Only flavone <b>3c</b> exhibited relatively strong and comparable cytotoxicity against the MCF-7 and A549 cell lines with IC<sub>50</sub> values of 6.96 ± 0.66 and 6.42 ± 0.79 μM, respectively. Both series of compounds exhibited strong activity against the MCF-7 and A549 cell lines compared to the analogous quercetin (IC<sub>50</sub> = 35.40 ± 1.78 and 35.38 ± 1.78 μM, respectively) though moderate compared to nintedanib (IC<sub>50</sub> = 0.53 ± 0.11 and 0.74 ± 0.15 μM, respectively). The test compounds generally exhibited reduced cytotoxicity against the Vero cells compared to this anticancer drug. Molecular docking revealed strong alignment of the test compounds with the enzyme backbone to engage in hydrogen bonding interaction/s and hydrophobic contacts with the residues in the active sites of α-glucosidase and α-amylase. The test compounds possess favorable drug-likeness properties, supporting their potential as therapeutic candidates against T2DM.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid-State Fermentation of Wheat Bran with Clostridium butyricum: Impact on Microstructure, Nutrient Release, Antioxidant Capacity, and Alleviation of Ulcerative Colitis in Mice. 丁酸梭菌固态发酵小麦麸皮:对微结构、营养释放、抗氧化能力和缓解小鼠溃疡性结肠炎的影响
IF 6 2区 医学
Antioxidants Pub Date : 2024-10-17 DOI: 10.3390/antiox13101259
Heng Zhang, Min Zhang, Xin Zheng, Xiaofang Xu, Jiawen Zheng, Yuanliang Hu, Yuxia Mei, Yangyang Liu, Yunxiang Liang
{"title":"Solid-State Fermentation of Wheat Bran with <i>Clostridium butyricum</i>: Impact on Microstructure, Nutrient Release, Antioxidant Capacity, and Alleviation of Ulcerative Colitis in Mice.","authors":"Heng Zhang, Min Zhang, Xin Zheng, Xiaofang Xu, Jiawen Zheng, Yuanliang Hu, Yuxia Mei, Yangyang Liu, Yunxiang Liang","doi":"10.3390/antiox13101259","DOIUrl":"10.3390/antiox13101259","url":null,"abstract":"<p><p>This study investigated the effects of solid-state fermentation with <i>Clostridium butyricum</i> on the microstructure of wheat bran, the release of dietary fiber and phenolic compounds, and antioxidant capacity. Compared with unfermented wheat bran, insoluble dietary fiber and phytic acid content decreased, whereas soluble dietary fiber and water-extractable arabinoxylan content increased in <i>C. butyricum</i> culture. Because of the increased release of phenolic compounds, such as ferulic acid and apigenin, and organic acids, such as isobutyric acid, the antioxidant capacity of the culture was considerably improved. Furthermore, the culture of <i>C. butyricum</i> treated with dextran sulfate sodium-induced ulcerative colitis in mice enhanced the expression of intestinal mucus and tight-junction proteins, modulating the gut microbiota structure, increasing the levels of short-chain fatty acids in the intestine, and restoring the essential functions of the gut microbiota. These anti-inflammatory effects stemmed from the combined action of various effective components.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504992/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovations in Nuclear Medicine Imaging for Reactive Oxygen Species: Applications and Radiopharmaceuticals. 活性氧核医学成像的创新:应用与放射性药物。
IF 6 2区 医学
Antioxidants Pub Date : 2024-10-17 DOI: 10.3390/antiox13101254
Joo Yeon Park, Sun Mi Park, Tae Sup Lee, Sang Ju Lee, Ji-Young Kim, Seung Jun Oh, Hai-Jeon Yoon, Bom Sahn Kim, Byung Seok Moon
{"title":"Innovations in Nuclear Medicine Imaging for Reactive Oxygen Species: Applications and Radiopharmaceuticals.","authors":"Joo Yeon Park, Sun Mi Park, Tae Sup Lee, Sang Ju Lee, Ji-Young Kim, Seung Jun Oh, Hai-Jeon Yoon, Bom Sahn Kim, Byung Seok Moon","doi":"10.3390/antiox13101254","DOIUrl":"10.3390/antiox13101254","url":null,"abstract":"<p><p>Reactive oxygen species (ROS) are generated during normal cellular energy production and play a critical role in maintaining cellular function. However, excessive ROS can damage cells and tissues, contributing to the development of diseases such as cardiovascular, inflammatory, and neurodegenerative disorders. This review explores the potential of nuclear medicine imaging techniques for detecting ROS and evaluates various radiopharmaceuticals used in these applications. Radiopharmaceuticals, which are drugs labeled with radionuclides, can bind to specific biomarkers, facilitating their identification in vivo using nuclear medicine equipment, i.e., positron emission tomography and single photon emission computed tomography, for diagnostic purposes. This review includes a comprehensive search of PubMed, covering radiopharmaceuticals such as analogs of fluorescent probes and antioxidant vitamin C, and biomarkers targeting mitochondrial complex I or cystine/glutamate transporter.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Ubiquitous and Multifaceted Coenzyme Q. 无处不在、用途广泛的辅酶 Q。
IF 6 2区 医学
Antioxidants Pub Date : 2024-10-17 DOI: 10.3390/antiox13101261
Luca Tiano, Plácido Navas
{"title":"The Ubiquitous and Multifaceted Coenzyme Q.","authors":"Luca Tiano, Plácido Navas","doi":"10.3390/antiox13101261","DOIUrl":"10.3390/antiox13101261","url":null,"abstract":"<p><p>Coenzyme Q<sub>10</sub> (CoQ<sub>10</sub>) is composed of a benzoquinone ring and an isoprenoid side chain attached to carbon 3 of the ring [...].</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, Synthesis, and Anti-Melanogenic Activity of 2-Mercaptomethylbenzo[d]imidazole Derivatives Serving as Tyrosinase Inhibitors: An In Silico, In Vitro, and In Vivo Exploration. 作为酪氨酸酶抑制剂的 2-巯甲基苯并[d]咪唑衍生物的设计、合成和抗黑色素生成活性:硅学、体外和体内研究。
IF 6 2区 医学
Antioxidants Pub Date : 2024-10-16 DOI: 10.3390/antiox13101248
Hee Jin Jung, Hyeon Seo Park, Hye Jin Kim, Hye Soo Park, Yujin Park, Pusoon Chun, Hae Young Chung, Hyung Ryong Moon
{"title":"Design, Synthesis, and Anti-Melanogenic Activity of 2-Mercaptomethylbenzo[<i>d</i>]imidazole Derivatives Serving as Tyrosinase Inhibitors: An In Silico, In Vitro, and In Vivo Exploration.","authors":"Hee Jin Jung, Hyeon Seo Park, Hye Jin Kim, Hye Soo Park, Yujin Park, Pusoon Chun, Hae Young Chung, Hyung Ryong Moon","doi":"10.3390/antiox13101248","DOIUrl":"10.3390/antiox13101248","url":null,"abstract":"<p><p>2-Mercaptomethylbenzo[<i>d</i>]imidazole (2-MMBI) derivatives were designed and synthesized as tyrosinase (TYR) chelators using 2-mercaptomethylimidazole scaffolds. Seven of the ten 2-MMBI derivatives exhibited stronger inhibition of mushroom TYR activity than kojic acid. Their ability to chelate copper ions was demonstrated through experiments using the copper chelator pyrocatechol violet and assays measuring TYR activity in the presence or absence of exogenous CuSO<sub>4</sub>. The inhibition mechanisms of derivatives <b>1</b>, <b>3</b>, <b>8</b>, and <b>9</b>, which showed excellent TYR inhibitory activity, were elucidated through kinetic studies and supported by the docking simulation results. Derivatives <b>3</b>, <b>7</b>, <b>8</b>, and <b>10</b> significantly inhibited cellular TYR activity and melanin production in B16F10 cells in a dose-dependent manner, with stronger potency than kojic acid. Furthermore, in situ, derivatives <b>7</b> and <b>10</b> showed stronger inhibitory effects on B16F10 cell TYR activity than kojic acid. Six derivatives, including <b>8</b>, showed highly potent depigmentation in zebrafish larvae, outpacing kojic acid even at 200-670 times lower concentrations. Additionally, all derivatives could scavenge for reactive oxygen species without causing cytotoxicity in epidermal cells. These results suggested that 2-MMBI derivatives are promising anti-melanogenic agents.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidative Stress in Cataract Formation: Is There a Treatment Approach on the Horizon? 白内障形成过程中的氧化应激:是否有一种治疗方法即将问世?
IF 6 2区 医学
Antioxidants Pub Date : 2024-10-16 DOI: 10.3390/antiox13101249
Jingyan Li, Francesco Buonfiglio, Ying Zeng, Norbert Pfeiffer, Adrian Gericke
{"title":"Oxidative Stress in Cataract Formation: Is There a Treatment Approach on the Horizon?","authors":"Jingyan Li, Francesco Buonfiglio, Ying Zeng, Norbert Pfeiffer, Adrian Gericke","doi":"10.3390/antiox13101249","DOIUrl":"10.3390/antiox13101249","url":null,"abstract":"<p><p>Cataracts, a leading cause of blindness worldwide, are closely linked to oxidative stress-induced damage to lens epithelial cells (LECs). Key factors contributing to cataract formation include aging, arterial hypertension, and diabetes mellitus. Given the high global prevalence of cataracts, the burden of cataract-related visual impairment is substantial, highlighting the need for pharmacological strategies to supplement surgical interventions. Understanding the molecular pathways involved in oxidative stress during cataract development may offer valuable insights for designing novel therapeutic approaches. This review explores the role of oxidative stress in cataract formation, focusing on critical mechanisms, such as mitochondrial dysfunction, endoplasmic reticulum stress, loss of gap junctions, and various cell death pathways in LECs. Additionally, we discuss emerging therapeutic strategies and potential targeting options, including antioxidant-based treatments.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505147/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Baicalein Ameliorates Insulin Resistance of HFD/STZ Mice Through Activating PI3K/AKT Signal Pathway of Liver and Skeletal Muscle in a GLP-1R-Dependent Manner. 黄芩素通过依赖 GLP-1R 的方式激活肝脏和骨骼肌的 PI3K/AKT 信号通路,改善高脂饮食/STZ 小鼠的胰岛素抵抗。
IF 6 2区 医学
Antioxidants Pub Date : 2024-10-16 DOI: 10.3390/antiox13101246
Na Liu, Xin Cui, Tingli Guo, Xiaotong Wei, Yuzhuo Sun, Jieyun Liu, Yangyang Zhang, Weina Ma, Wenhui Yan, Lina Chen
{"title":"Baicalein Ameliorates Insulin Resistance of HFD/STZ Mice Through Activating PI3K/AKT Signal Pathway of Liver and Skeletal Muscle in a GLP-1R-Dependent Manner.","authors":"Na Liu, Xin Cui, Tingli Guo, Xiaotong Wei, Yuzhuo Sun, Jieyun Liu, Yangyang Zhang, Weina Ma, Wenhui Yan, Lina Chen","doi":"10.3390/antiox13101246","DOIUrl":"10.3390/antiox13101246","url":null,"abstract":"<p><p>Insulin resistance (IR) is the principal pathophysiological change occurring in diabetes mellitus (DM). Baicalein, a bioactive flavonoid primarily extracted from the medicinal plant <i>Scutellaria baicalensis Georgi</i>, has been shown in our previous research to be a potential natural glucagon-like peptide-1 receptor (GLP-1R) agonist. However, the exact therapeutic effect of baicalein on DM and its underlying mechanisms remain elusive. In this study, we investigated the therapeutic effects of baicalein on diabetes and sought to clarify its underlying molecular mechanisms. Our results demonstrated that baicalein improves hyperglycemic, hyperinsulinemic, and glucometabolic disorders in mice with induced diabetes via GLP-1R. This was confirmed by the finding that baicalein's effects on improving IR were largely diminished in mice with whole-body <i>Glp1r</i> ablation. Complementarily, network pharmacology analysis highlighted the pivotal involvement of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) insulin signaling pathway in the therapeutic actions of baicalein on IR. Our mechanism research significantly confirmed that baicalein mitigates hepatic and muscular IR through the PI3K/AKT signal pathway, both in vitro and in vivo. Furthermore, we demonstrated that baicalein enhances glucose uptake in skeletal muscle cells under IR conditions through the Ca<sup>2+</sup>/calmodulin-dependent protein kinase II (CaMKII)-adenosine 5'-monophosphate-activated protein kinase (AMPK)-glucose transporter 4 (GLUT4) signaling pathway in a GLP-1R-dependent manner. In conclusion, our findings confirm the therapeutic effects of baicalein on IR and reveal that it improves IR in liver and muscle tissues through the PI3K/AKT insulin signaling pathway in a GLP-1R dependent manner. Moreover, we clarified that baicalein enhances the glucose uptake in skeletal muscle tissue through the Ca<sup>2+</sup>/CaMKII-AMPK-GLUT4 signal pathway.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiological and Microstructure Analysis Reveals the Mechanism by Which Formic Acid Delays Postharvest Physiological Deterioration of Cassava. 生理学和微观结构分析揭示了甲酸延迟木薯采后生理退化的机制
IF 6 2区 医学
Antioxidants Pub Date : 2024-10-16 DOI: 10.3390/antiox13101245
Yannian Che, Zhongping Ding, Chen Shen, Alisdair R Fernie, Xiangning Tang, Yuan Yao, Jiao Liu, Yajie Wang, Ruimei Li, Jianchun Guo
{"title":"Physiological and Microstructure Analysis Reveals the Mechanism by Which Formic Acid Delays Postharvest Physiological Deterioration of Cassava.","authors":"Yannian Che, Zhongping Ding, Chen Shen, Alisdair R Fernie, Xiangning Tang, Yuan Yao, Jiao Liu, Yajie Wang, Ruimei Li, Jianchun Guo","doi":"10.3390/antiox13101245","DOIUrl":"10.3390/antiox13101245","url":null,"abstract":"<p><p>Formic acid is reported to act as a food preservative and feed additive, but its effects on controlling postharvest physiological deterioration (PPD) development in cassava are unclear. In this study, we assessed the effectiveness of different concentrations of formic acid in attenuating PPD occurrence in fresh-cut cassava. The results showed that the concentration of 0.1% (<i>v</i>/<i>v</i>) formic acid could significantly delay the occurrence of PPD, and that the higher the concentration of formic acid supplied, the later the occurrence of PPD symptoms. The physiological and biochemical analysis of 0.5%-formic-acid-treated cassava slices revealed that formic acid decreased the degradation of starch, inhibited the accumulation of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), malondialdehyde (MDA), and water-soluble pectin in cassava slices with PPD development, and increased the activities of the antioxidant enzymes ascorbate peroxidase (APX) and glutathione reductase (GR). A microscopic observation showed that the formic acid treatment inhibited the enlargement of the intercellular space during the cassava PPD process, which suggests that the formation of an intercellular layer of the cell wall was inhibited by formic acid. This study thus revealed the mechanism used by formic acid to extend the cassava shelf life; however, a detailed evaluation of the possible side effects on, for example, the cyanide content will be needed to categorically ensure the safety of this method.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Bioaccesibility Study of Cereal-Based Nutraceutical Ingredients Using INFOGEST Static, Semi-Dynamic and Dynamic In Vitro Gastrointestinal Digestion. 利用 INFOGEST 静态、半动态和动态体外胃肠道消化技术对谷物类营养成分的生物相容性进行比较研究。
IF 6 2区 医学
Antioxidants Pub Date : 2024-10-16 DOI: 10.3390/antiox13101244
Iván Jesús Jiménez-Pulido, Ana Belén Martín-Diana, Daniel de Luis, Daniel Rico
{"title":"Comparative Bioaccesibility Study of Cereal-Based Nutraceutical Ingredients Using INFOGEST Static, Semi-Dynamic and Dynamic In Vitro Gastrointestinal Digestion.","authors":"Iván Jesús Jiménez-Pulido, Ana Belén Martín-Diana, Daniel de Luis, Daniel Rico","doi":"10.3390/antiox13101244","DOIUrl":"10.3390/antiox13101244","url":null,"abstract":"<p><p>Efficient development of effective functional foods and nutraceuticals requires adequate estimation methods of the bioaccessibility of their bioactive compounds. Specially grain-based nutraceuticals and functional ingredients are often enriched in bound/low bioavailable bioactive phytochemicals. The objective of this work was to evaluate the differences in applying static or dynamic digestion models for the estimation of bioaccessibility of antioxidants present in cereal grain-based/fiber-rich ingredients produced using enzymatic hydrolysis and sprouting processes. Main liberated phenolic compounds, antioxidant activity (ABTS<sup>•+</sup> and ORAC) and ferric reducing capacity were evaluated in the samples following three digestion protocols with differences based on their dynamism: static, semi-dynamic and dynamic. The samples digested with the dynamic method showed higher antioxidant and reducing capacities than those digested with the static and semi-dynamic protocols. The results obtained from the digests with the dynamic model showed a total phenol content (TPs) ranging from 1068.22 to 1456.65 μmol GAE 100 g<sup>-1</sup> and antioxidant capacity values from 7944.62 to 15,641.90 μmol TE 100 g<sup>-1</sup> (ORAC) and from 8454.08 to 11,002.64 μmol TE 100 g<sup>-1</sup> (ABTS<sup>•+</sup>), with a reducing power ranging from 2103.32 to 2679.78 mmol Fe reduced 100 g<sup>-1</sup> (FRAP). The dynamic character of the protocols used for developing bioactive cereal-based foods significantly affects the estimation of their bioaccessibility, probably giving a better approach to their potential bioavailability in in vivo systems.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505457/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信