PTEN/PKM2/ERα-Driven Glyoxalase 1 Overexpression Sustains PC3 Prostate Cancer Cell Growth Through MG-H1/RAGE Pathway Desensitization Leading to H2O2-Dependent KRIT1 Downregulation.
{"title":"PTEN/PKM2/ERα-Driven Glyoxalase 1 Overexpression Sustains PC3 Prostate Cancer Cell Growth Through MG-H1/RAGE Pathway Desensitization Leading to H<sub>2</sub>O<sub>2</sub>-Dependent KRIT1 Downregulation.","authors":"Dominga Manfredelli, Camilla Torcoli, Marilena Pariano, Guido Bellezza, Tiziano Baroni, Vincenzo N Talesa, Angelo Sidoni, Cinzia Antognelli","doi":"10.3390/antiox14091120","DOIUrl":null,"url":null,"abstract":"<p><p>Glyoxalase 1 (Glo1) functions as a catalyst that neutralizes methylglyoxal (MG), a highly reactive glycating agent predominantly produced during glycolysis-a metabolic pathway upregulated in cancer cells. MG primarily reacts with the amino groups of proteins (especially at arginine residues), leading to the formation of a major advanced glycation end product known as MG-derived hydroimidazolone 1 (MG-H1). We previously demonstrated in PC3 human prostate cancer (PCa) cells that the PTEN/PKM2/ERα axis promotes their aggressive phenotype by regulating the Glo1/MG-H1 pathway. In this study, after confirming our earlier findings, we investigated the downstream mechanisms of the PTEN/PKM2/ERα/Glo1/MG-H1 axis in controlling PC3 cell growth, focusing on the role of RAGE, a high-affinity receptor for MG-H1; hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>); and Krev interaction trapped 1 (KRIT1), an emerging tumor suppressor. Using genetic approaches and specific inhibitors/scavengers, we demonstrated that the PTEN/PKM2/ERα/Glo1/MG-H1 axis promotes PC3 cell growth-measured by proliferation and etoposide-induced apoptosis resistance-through a mechanism involving MG-H1/RAGE pathway desensitization that leads to H<sub>2</sub>O<sub>2</sub>-mediated KRIT1 downregulation. These findings support and expand the role of PTEN signaling in PCa progression and shed light on novel mechanistic pathways driven by MG-dependent glycative stress, involving KRIT1, in this still incurable stage of the disease.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466846/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091120","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glyoxalase 1 (Glo1) functions as a catalyst that neutralizes methylglyoxal (MG), a highly reactive glycating agent predominantly produced during glycolysis-a metabolic pathway upregulated in cancer cells. MG primarily reacts with the amino groups of proteins (especially at arginine residues), leading to the formation of a major advanced glycation end product known as MG-derived hydroimidazolone 1 (MG-H1). We previously demonstrated in PC3 human prostate cancer (PCa) cells that the PTEN/PKM2/ERα axis promotes their aggressive phenotype by regulating the Glo1/MG-H1 pathway. In this study, after confirming our earlier findings, we investigated the downstream mechanisms of the PTEN/PKM2/ERα/Glo1/MG-H1 axis in controlling PC3 cell growth, focusing on the role of RAGE, a high-affinity receptor for MG-H1; hydrogen peroxide (H2O2); and Krev interaction trapped 1 (KRIT1), an emerging tumor suppressor. Using genetic approaches and specific inhibitors/scavengers, we demonstrated that the PTEN/PKM2/ERα/Glo1/MG-H1 axis promotes PC3 cell growth-measured by proliferation and etoposide-induced apoptosis resistance-through a mechanism involving MG-H1/RAGE pathway desensitization that leads to H2O2-mediated KRIT1 downregulation. These findings support and expand the role of PTEN signaling in PCa progression and shed light on novel mechanistic pathways driven by MG-dependent glycative stress, involving KRIT1, in this still incurable stage of the disease.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.