AntioxidantsPub Date : 2024-11-20DOI: 10.3390/antiox13111428
Linda M Bakker, Michael E Boulton, Małgorzata B Różanowska
{"title":"(Photo)toxicity of Partially Oxidized Docosahexaenoate and Its Effect on the Formation of Lipofuscin in Cultured Human Retinal Pigment Epithelial Cells.","authors":"Linda M Bakker, Michael E Boulton, Małgorzata B Różanowska","doi":"10.3390/antiox13111428","DOIUrl":"10.3390/antiox13111428","url":null,"abstract":"<p><p>Docosahexaenoate is a cytoprotective ω-3 polyunsaturated lipid that is abundant in the retina and is essential for its function. Due to its six unsaturated double bonds, docosahexaenoate is highly susceptible to oxidation and the formation of products with photosensitizing properties. This study aimed to test on cultured human retinal pigment epithelial cells ARPE-19 the (photo)cytotoxic potential of partly oxidized docosahexaenoate and its effect on the formation of lipofuscin from phagocytosed photoreceptor outer segments (POSs). The results demonstrate that the cytoprotective effects of docosahexaenoate do not counteract the deleterious effects of its oxidation products, leading to the concentration-dependent loss of cell metabolic activity, which is exacerbated by concomitant exposure to visible light. Partly oxidized docosahexaenoate does not cause permeability of the cell plasma membrane but does cause apoptosis. While vitamin E can provide partial protection from the (photo)toxicity of partly oxidized docosahexaenoate, zeaxanthin undergoes rapid photodegradation and can exacerbate the (photo)toxicity. Feeding cells with POSs enriched in partly oxidized docosahexaenoate results in a greater accumulation of intracellular fluorescent lipofuscin than in cells fed POSs without the addition. In conclusion, partly oxidized docosahexaenoate increases the accumulation of lipofuscin-like intracellular deposits, is cytotoxic, and its toxicity increases during exposure to light. These effects may contribute to the increased progression of geographic atrophy observed after long-term supplementation with docosahexaenoate in age-related macular degeneration patients.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 11","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591205/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"25-Hydroxycholecalciferol Improves Cardiac Metabolic Adaption, Mitochondrial Biogenetics, and Redox Status to Ameliorate Pathological Remodeling and Functional Failure in Obese Chickens.","authors":"Shih-Kai Chiang, Mei-Ying Sin, Jun-Wen Lin, Maraddin Siregar, Gilmour Valdez, Yu-Hui Chen, Thau Kiong Chung, Rosemary L Walzem, Lin-Chu Chang, Shuen-Ei Chen","doi":"10.3390/antiox13111426","DOIUrl":"10.3390/antiox13111426","url":null,"abstract":"<p><p>Broiler breeder hens allowed ad libitum (Ad) feed intake developed obesity and cardiac pathogenesis and thereby were susceptible to sudden death. A supplement of 69 µg 25-hydroxycholecalciferol (25-OH-D3)/kg feed rescued the livability of feed-restricted (R) and Ad-hens (mortality; 6.7% vs. 8.9% and 31.1% vs. 48.9%). Necropsy with the surviving counterparts along the time course confirmed alleviation of myocardial remodeling and functional failure by 25-OH-D3, as shown by BNP and MHC-β expressions, pathological hypertrophy, and cardiorespiratory responses (<i>p</i> < 0.05). 25-OH-D3 mitigated cardiac deficient bioenergetics in Ad-hens by rescuing PGC-1α activation, mitochondrial biogenesis, dynamics, and electron transport chain complex activities, and metabolic adaptions in glucose oxidation, pyruvate/lactate interconversion, TCA cycle, and β-oxidation, as well as in TG and ceramide accumulation to limit lipotoxic development (<i>p</i> < 0.05). Supplemental 25-OH-D3 also sustained Nrf2 activation and relieved MDA accumulation, protein carbonylation, and GSH depletion to potentiate cell survival in the failing heart (<i>p</i> < 0.05). Parts of the redox amendments were mediated via lessened blood hematocrit and heme metabolism, and improved iron status and related gene regulations (<i>p</i> < 0.05). In conclusion, 25-OH-D3 ameliorates cardiac pathological remodeling and functional compromise to rescue the livability of obese hens through metabolic flexibility and mitochondrial bioenergetics, and by operating at antioxidant defense, and heme and iron metabolism, to maintain redox homeostasis and sustain cell viability.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 11","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AntioxidantsPub Date : 2024-11-20DOI: 10.3390/antiox13111425
Cristina-Ştefania Gǎlbǎu, Marius Irimie, Andrea Elena Neculau, Lorena Dima, Lea Pogačnik da Silva, Mihai Vârciu, Mihaela Badea
{"title":"The Potential of Plant Extracts Used in Cosmetic Product Applications-Antioxidants Delivery and Mechanism of Actions.","authors":"Cristina-Ştefania Gǎlbǎu, Marius Irimie, Andrea Elena Neculau, Lorena Dima, Lea Pogačnik da Silva, Mihai Vârciu, Mihaela Badea","doi":"10.3390/antiox13111425","DOIUrl":"10.3390/antiox13111425","url":null,"abstract":"<p><p>Natural ingredients have been used in skincare products for thousands of years. The current focus is on novel natural bioactivities that shield the skin from UV rays and free radicals, among other damaging elements, while enhancing skin health. Free radicals significantly contribute to skin damage and hasten ageing by interfering with defence and restorative processes. Plants contain natural chemicals that can scavenge free radicals and have antioxidant capabilities. Plant materials are becoming increasingly popular as natural antioxidants related to the expanding interest in plant chemistry. This review focuses on the significance of medicinal plants in skin health and ageing and their potential as a source of antioxidant substances such as vitamins, polyphenols, stilbenes, flavonoids, and methylxanthines.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 11","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591253/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142725193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PTSD Increases Risk for Hypertension Development Through PVN Activation and Vascular Dysfunction in Sprague Dawley Rats.","authors":"Xinqian Chen, Xin Yan, Chunxiu Yu, Qing-Hui Chen, Lanrong Bi, Zhiying Shan","doi":"10.3390/antiox13111423","DOIUrl":"10.3390/antiox13111423","url":null,"abstract":"<p><p>This study investigates the impact of single prolonged stress (SPS), a model of post-traumatic stress disorder (PTSD), on cardiovascular responses, hypothalamic paraventricular nucleus (PVN) activity, and vascular function to elucidate the mechanisms linking traumatic stress to hypertension. Although SPS did not directly cause chronic hypertension in male Sprague Dawley (SD) rats, it induced acute but transient increases in blood pressure and heart rate and significantly altered the expression of hypertension-associated genes, such as vasopressin, angiotensin II type 1 receptor (AT1R), and FOSL1 in the PVN. Notably, mitochondrial reactive oxygen species (mtROS) were predominantly elevated in the pre-autonomic regions of the PVN, colocalizing with AT1R- and FOSL1-expressing cells, suggesting that oxidative stress may amplify sympathetic activation and stress responses. SPS also increased mRNA levels of pro-inflammatory cytokines (TNFα and IL1β) and inducible nitric oxide synthase (iNOS) in the aorta, and impaired vascular reactivity to vasoconstrictor and vasodilator stimuli, reflecting compromised vascular function. These findings suggest that SPS-sensitize neuroendocrine, autonomic, and vascular pathways create a state of cardiovascular vulnerability that could predispose individuals to hypertension when exposed to additional stressors. Understanding these mechanisms provides critical insights into the pathophysiology of stress-related cardiovascular disorders and underscores the need for targeted therapeutic interventions that address oxidative stress and modulate altered PVN pathways to mitigate the cardiovascular impact of PTSD and related conditions.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 11","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142725066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AntioxidantsPub Date : 2024-11-20DOI: 10.3390/antiox13111420
Namuna Panday, Dibakar Sigdel, Irsyad Adam, Joseph Ramirez, Aarushi Verma, Anirudh N Eranki, Wei Wang, Ding Wang, Peipei Ping
{"title":"Data-Driven Insights into the Association Between Oxidative Stress and Calcium-Regulating Proteins in Cardiovascular Disease.","authors":"Namuna Panday, Dibakar Sigdel, Irsyad Adam, Joseph Ramirez, Aarushi Verma, Anirudh N Eranki, Wei Wang, Ding Wang, Peipei Ping","doi":"10.3390/antiox13111420","DOIUrl":"10.3390/antiox13111420","url":null,"abstract":"<p><p>A growing body of biomedical literature suggests a bidirectional regulatory relationship between cardiac calcium (Ca<sup>2+</sup>)-regulating proteins and reactive oxygen species (ROS) that is integral to the pathogenesis of various cardiac disorders via oxidative stress (OS) signaling. To address the challenge of finding hidden connections within the growing volume of biomedical research, we developed a data science pipeline for efficient data extraction, transformation, and loading. Employing the CaseOLAP (Context-Aware Semantic Analytic Processing) algorithm, our pipeline quantifies interactions between 128 human cardiomyocyte Ca<sup>2+</sup>-regulating proteins and eight cardiovascular disease (CVD) categories. Our machine-learning analysis of CaseOLAP scores reveals that the molecular interfaces of Ca<sup>2+</sup>-regulating proteins uniquely associate with cardiac arrhythmias and diseases of the cardiac conduction system, distinguishing them from other CVDs. Additionally, a knowledge graph analysis identified 59 of the 128 Ca<sup>2+</sup>-regulating proteins as involved in OS-related cardiac diseases, with cardiomyopathy emerging as the predominant category. By leveraging a link prediction algorithm, our research illuminates the interactions between Ca<sup>2+</sup>-regulating proteins, OS, and CVDs. The insights gained from our study provide a deeper understanding of the molecular interplay between cardiac ROS and Ca<sup>2+</sup>-regulating proteins in the context of CVDs. Such an understanding is essential for the innovation and development of targeted therapeutic strategies.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 11","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142725156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AntioxidantsPub Date : 2024-11-20DOI: 10.3390/antiox13111422
Nikolaos V Angelis, Efthymios Paronis, Georgia Sarikaki, Antonios Kyriakopoulos, Anna Agapaki, Pigi-Maria Niotopoulou, Christina C Knai, Pavlos Alexakos, Odyssefs Liagkas, Konstantinos F Mavreas, Constantin N Baxevanis, Alexios-Leandros Skaltsounis, Ourania E Tsitsilonis, Ioannis K Kostakis
{"title":"Ole-Oxy, a Semi-Synthetic Analog of Oleuropein, Ameliorates Acute Skin and Colon Inflammation in Mice.","authors":"Nikolaos V Angelis, Efthymios Paronis, Georgia Sarikaki, Antonios Kyriakopoulos, Anna Agapaki, Pigi-Maria Niotopoulou, Christina C Knai, Pavlos Alexakos, Odyssefs Liagkas, Konstantinos F Mavreas, Constantin N Baxevanis, Alexios-Leandros Skaltsounis, Ourania E Tsitsilonis, Ioannis K Kostakis","doi":"10.3390/antiox13111422","DOIUrl":"10.3390/antiox13111422","url":null,"abstract":"<p><p>Inflammation is a key process in the pathophysiology of various diseases, with macrophages playing a central role in the inflammatory response. This study investigates the anti-inflammatory potential of a newly synthesized analog of oleuropein (OP), the major olive tree (<i>Olea europaea)</i> metabolite. This derivative of OP, named Ole-Oxy, was designed by introducing an oxygen atom between the aromatic ring and the aliphatic chain of OP, to enhance interaction with proteins and improve bioactivity. Ole-Oxy demonstrated notable anti-inflammatory effects in vitro, particularly in phorbol 12-myristate 13-acetate-differentiated THP-1 macrophages, where it markedly reduced interleukin-6, tumor necrosis factor-α, and reactive oxygen species (ROS) levels, surpassing the effects of OP. In vivo, Ole-Oxy was evaluated in mouse models of acute skin and colon inflammation, showing significant efficacy in C57BL/6J mice, likely due to their Th1-biased immune response. Our results suggest that Ole-Oxy modulates inflammation through ROS scavenging and differential macrophage activation, underscoring the need for further research to fully elucidate its mechanism of action and optimize its pharmacokinetic properties for future therapeutic applications.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 11","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590887/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AntioxidantsPub Date : 2024-11-20DOI: 10.3390/antiox13111427
Antonio Curcio, Roberta Rocca, Federica Chiera, Maria Eugenia Gallo Cantafio, Ilenia Valentino, Ludovica Ganino, Pierpaolo Murfone, Angela De Simone, Giulia Di Napoli, Stefano Alcaro, Nicola Amodio, Anna Artese
{"title":"Hit Identification and Functional Validation of Novel Dual Inhibitors of HDAC8 and Tubulin Identified by Combining Docking and Molecular Dynamics Simulations.","authors":"Antonio Curcio, Roberta Rocca, Federica Chiera, Maria Eugenia Gallo Cantafio, Ilenia Valentino, Ludovica Ganino, Pierpaolo Murfone, Angela De Simone, Giulia Di Napoli, Stefano Alcaro, Nicola Amodio, Anna Artese","doi":"10.3390/antiox13111427","DOIUrl":"10.3390/antiox13111427","url":null,"abstract":"<p><p>Chromatin organization, which is under the control of histone deacetylases (HDACs), is frequently deregulated in cancer cells. Amongst HDACs, HDAC8 plays an oncogenic role in different neoplasias by acting on both histone and non-histone substrates. Promising anti-cancer strategies have exploited dual-targeting drugs that inhibit both HDAC8 and tubulin. These drugs have shown the potential to enhance the outcome of anti-cancer treatments by simultaneously targeting multiple pathways critical to disease onset and progression. In this study, a structure-based virtual screening (SBVS) of 96403 natural compounds was performed towards the four Class I HDAC isoforms and tubulin. Using molecular docking and molecular dynamics simulations (MDs), we identified two molecules that could selectively interact with HDAC8 and tubulin. CNP0112925 (arundinin), bearing a polyphenolic structure, was confirmed to inhibit HDAC8 activity and tubulin organization, affecting breast cancer cell viability and triggering mitochondrial superoxide production and apoptosis.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 11","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591096/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AntioxidantsPub Date : 2024-11-20DOI: 10.3390/antiox13111424
Manoj Kumar Tembhre, Shipra
{"title":"Low-Dose Melittin Enhanced Pigment Production Through the Upregulation of Tyrosinase Activity and Dendricity in Melanocytes by Limiting Oxidative Stress: A Therapeutic Implication for Vitiligo.","authors":"Manoj Kumar Tembhre, Shipra","doi":"10.3390/antiox13111424","DOIUrl":"10.3390/antiox13111424","url":null,"abstract":"<p><p>Melittin is a major active ingredient of the bee venom produced by honeybees (<i>Apis mellifera</i>) that exerts various biological effects, such as anti-inflammatory, anti-tumor, anti-microbial, and antioxidant. The role of melittin in modulating melanin production by melanocytes is not known. Therefore, the present study aimed to study the effect of melittin on melanin production by human melanocytes along with its antioxidant status. Cultured human melanocytes were treated with melittin in a dose- and time-dependent manner, followed by the study of the cell viability, cell proliferation, and total melanin content. The effects of melittin in combination with narrow-band ultraviolet B (NB-UVB) on the total melanin content, melanocyte dendricity, oxidative stress, and the expression of genes associated with melanogenesis were investigated. An increased melanin content was observed with a low dose of melittin (LDM) (alone or in combination with NB-UVB), and there was a corresponding increase in the tyrosinase activity, melanocyte dendricity, and melanogenesis-associated genes. The present study concluded that LDM alone or LDM (+NB-UVB) can induce melanin synthesis by increasing the tyrosinase activity in melanocytes by limiting the oxidative stress, and this may be therapeutically exploited as an adjuvant therapy for vitiligo.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 11","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590868/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142725032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mitochondrial Redox Status Regulates Glycogen Metabolism via Glycogen Phosphorylase Activity.","authors":"Ikko Sakamoto, Shuichi Shibuya, Hidetoshi Nojiri, Kotaro Takeno, Hiroshi Nishimune, Keisuke Yaku, Takashi Nakagawa, Muneaki Ishijima, Takahiko Shimizu","doi":"10.3390/antiox13111421","DOIUrl":"10.3390/antiox13111421","url":null,"abstract":"<p><p>Mitochondria and glycogen are co-distributed in skeletal muscles to regulate the metabolic status. Mitochondria are also redox centers that regulate the muscle function during exercise. However, the pathophysiological relationship between the mitochondrial redox status and glycogen metabolism in the muscle remains unclear. In the present study, we examined the pathological effects of mitochondrial dysfunction induced by mitochondrial superoxide dismutase (SOD2) depletion on glycogen metabolism. We found that muscle glycogen was significantly accumulated in association with motor dysfunction in mice with a muscle-specific SOD2 deficiency. Muscle glycogen phosphorylase (GP-M) activity, which is a key enzyme for glycogen degradation at times when energy is needed (e.g., during exercise), was significantly decreased in the mutant muscle. Moreover, the GP-M activity on normal muscle sections decreased after treatment with paraquat, a superoxide generator. In contrast, treatment with antioxidants reversed the GP-M activity and motor disturbance of the mutant mice, indicating that GP-M activity was reversibly regulated by the redox balance. These results demonstrate that the maintenance of the mitochondrial redox balance regulates glycogen metabolism via GP-M activity.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 11","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142725093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AntioxidantsPub Date : 2024-11-20DOI: 10.3390/antiox13111429
Hassam Tahir, Muhammad Sajjad, Minjie Qian, Muhammad Zeeshan Ul Haq, Ashar Tahir, Muhammad Aamir Farooq, Ling Wei, Shaopu Shi, Kaibing Zhou, Quansheng Yao
{"title":"Glutathione and Ascorbic Acid Accumulation in Mango Pulp Under Enhanced UV-B Based on Transcriptome.","authors":"Hassam Tahir, Muhammad Sajjad, Minjie Qian, Muhammad Zeeshan Ul Haq, Ashar Tahir, Muhammad Aamir Farooq, Ling Wei, Shaopu Shi, Kaibing Zhou, Quansheng Yao","doi":"10.3390/antiox13111429","DOIUrl":"10.3390/antiox13111429","url":null,"abstract":"<p><p>Mango (<i>Mangifera indica</i>), a nutritionally rich tropical fruit, is significantly impacted by UV-B radiation, which induces oxidative stress and disrupts physiological processes. This study aimed to investigate mango pulp's molecular and biochemical responses to UV-B stress (96 kJ/mol) from the unripe to mature stages over three consecutive years, with samples collected at 10-day intervals. UV-B stress affected both non-enzymatic parameters, such as maturity index, reactive oxygen species (ROS) levels, membrane permeability, and key enzymatic components of the ascorbate-glutathione (AsA-GSH) cycle. These enzymes included glutathione reductase (GR), gamma-glutamyl transferase (GGT), glutathione S-transferases (GST), glutathione peroxidase (GPX), glucose-6-phosphate dehydrogenase (G6PDH), galactono-1,4-lactone dehydrogenase (GalLDH), ascorbate peroxidase (APX), ascorbate oxidase (AAO), and monodehydroascorbate reductase (MDHAR). Transcriptomic analysis revealed 18 differentially expressed genes (DEGs) related to the AsA-GSH cycle, including <i>MiGR</i>, <i>MiGGT1</i>, <i>MiGGT2</i>, <i>MiGPX1</i>, <i>MiGPX2</i>, <i>MiGST1</i>, <i>MiGST2</i>, <i>MiGST3</i>, <i>MiG6PDH1</i>, <i>MiG6PDH2</i>, <i>MiGalLDH</i>, <i>MiAPX1</i>, <i>MiAPX2</i>, <i>MiAAO1</i>, <i>MiAAO2</i>, <i>MiAAO3</i>, <i>MiAAO4</i>, and <i>MiMDHAR</i>, validated through qRT-PCR. The findings suggest that UV-B stress activates a complex regulatory network in mango pulp to optimize ROS detoxification and conserve antioxidants, offering insights for enhancing the resilience of tropical fruit trees to environmental stressors.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 11","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591329/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}