Antioxidants最新文献

筛选
英文 中文
Cookies Fortified with Polyphenols Extracts: Impact on Phenolic Content, Antioxidant Activity, Inhibition of α-Amylase and α-Glucosidase Enzyme, Colour and Sensory Attractiveness 添加了多酚提取物的饼干:对酚类物质含量、抗氧化活性、α-淀粉酶和α-葡萄糖苷酶抑制作用、颜色和感官吸引力的影响
IF 7 2区 医学
Antioxidants Pub Date : 2024-09-13 DOI: 10.3390/antiox13091108
Daria Pędziwiatr, Marina Cano Lamadrid, Aneta Wojdyło
{"title":"Cookies Fortified with Polyphenols Extracts: Impact on Phenolic Content, Antioxidant Activity, Inhibition of α-Amylase and α-Glucosidase Enzyme, Colour and Sensory Attractiveness","authors":"Daria Pędziwiatr, Marina Cano Lamadrid, Aneta Wojdyło","doi":"10.3390/antiox13091108","DOIUrl":"https://doi.org/10.3390/antiox13091108","url":null,"abstract":"The goal of the research was to determine the impact of fortification with polyphenolic compounds on (i) sensory attractiveness (global satisfaction, appearance, colour, odour, flavour, sweetness, bitterness), (ii) content of polyphenols and colour (L*, a*, b*) after the baking process and (iii) their bioactive potential (antioxidants activity and inhibiting of α-amylase and α-glucosidase enzyme). Fortification was made with extracts of polyphenolic compounds of selected plant raw materials rich in polyphenols from quince (fruits), tilia (flowers), pomegranate (skin), passion fruit (endocarp), sour cherries (leaves), haskap and chokeberry (berries), silver skin (coffee beans), rosehip (seeds). Depending on the nature of the polyphenol extract, flavan-3-ols (monomeric and polymeric), phenolic acid, flavonols and anthocyanins were identified in the product in amounts ranging from 53.7 to 212.6 mg/100 g DM. Cookies’ colour (L*, a*, b*) depended on the type of polyphenol extract used for fortification. Cookies with haskap, chokeberry and sour cherry presented the highest antioxidant potential. Cookies with chokeberry, haskap and rosehip presented high activity in inhibiting α-amylase (65.5, 60.6 and 62.2% of inhibition, respectively), but cookies with haskap, silver skin and quince in inhibiting α-glucosidase activity (23.0, 20.4 and 21.4% of inhibition, respectively). In the sensory evaluation, the most attractive were cookies with rosehip and pomegranate (6.3 and 5.8 score, respectively), but the lowest ratings were given to cookies with passion fruit and silver skin but especially quince cookies, which obtained the lowest desirability (3.7 score). The acceptability of fortified cookies was determined to the least extent by monomeric flavan-3-ols and phenolic acids (in minus in odour/flavour, bitterness, sweetness and global satisfaction), but anthocyanins, polymeric procyanidins and flavonols had the most significant positive impact on consumer acceptance of the assessed features, i.e., global satisfaction, odour/flavour, sweetness and bitterness (positive consumer drivers).","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidative Stress and Age-Related Tumors 氧化应激与老年肿瘤
IF 7 2区 医学
Antioxidants Pub Date : 2024-09-13 DOI: 10.3390/antiox13091109
Emma Di Carlo, Carlo Sorrentino
{"title":"Oxidative Stress and Age-Related Tumors","authors":"Emma Di Carlo, Carlo Sorrentino","doi":"10.3390/antiox13091109","DOIUrl":"https://doi.org/10.3390/antiox13091109","url":null,"abstract":"Oxidative stress is the result of the imbalance between reactive oxygen and nitrogen species (RONS), which are produced by several endogenous and exogenous processes, and antioxidant defenses consisting of exogenous and endogenous molecules that protect biological systems from free radical toxicity. Oxidative stress is a major factor in the aging process, contributing to the accumulation of cellular damage over time. Oxidative damage to cellular biomolecules, leads to DNA alterations, lipid peroxidation, protein oxidation, and mitochondrial dysfunction resulting in cellular senescence, immune system and tissue dysfunctions, and increased susceptibility to age-related pathologies, such as inflammatory disorders, cardiovascular and neurodegenerative diseases, diabetes, and cancer. Oxidative stress-driven DNA damage and mutations, or methylation and histone modification, which alter gene expression, are key determinants of tumor initiation, angiogenesis, metastasis, and therapy resistance. Accumulation of genetic and epigenetic damage, to which oxidative stress contributes, eventually leads to unrestrained cell proliferation, the inhibition of cell differentiation, and the evasion of cell death, providing favorable conditions for tumorigenesis. Colorectal, breast, lung, prostate, and skin cancers are the most frequent aging-associated malignancies, and oxidative stress is implicated in their pathogenesis and biological behavior. Our aim is to shed light on the molecular and cellular mechanisms that link oxidative stress, aging, and cancers, highlighting the impact of both RONS and antioxidants, provided by diet and exercise, on cellular senescence, immunity, and development of an antitumor response. The dual role of ROS as physiological regulators of cell signaling responsible for cell damage and diseases, as well as its use for anti-tumor therapeutic purposes, will also be discussed. Managing oxidative stress is crucial for promoting healthy aging and reducing the risk of age-related tumors.","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indole-3-Carboxaldehyde Alleviates LPS-Induced Intestinal Inflammation by Inhibiting ROS Production and NLRP3 Inflammasome Activation 吲哚-3-甲醛通过抑制 ROS 生成和 NLRP3 炎症小体激活缓解 LPS 诱导的肠道炎症
IF 7 2区 医学
Antioxidants Pub Date : 2024-09-13 DOI: 10.3390/antiox13091107
Ji Cao, Qiuyu Bao, Haiping Hao
{"title":"Indole-3-Carboxaldehyde Alleviates LPS-Induced Intestinal Inflammation by Inhibiting ROS Production and NLRP3 Inflammasome Activation","authors":"Ji Cao, Qiuyu Bao, Haiping Hao","doi":"10.3390/antiox13091107","DOIUrl":"https://doi.org/10.3390/antiox13091107","url":null,"abstract":"Indole-3-carboxaldehyde (IAld) is a tryptophan (Trp) metabolite derived from gut microbiota, which has a potential protective effect on intestinal inflammatory diseases. Abnormal activation of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an important cause of intestinal inflammation. However, the effect and mechanism of IAld on NLRP3 inflammasome activation remain unclear. Here, we found that IAld inhibited the activation of the NLRP3 inflammasome in intestinal epithelial cells, and effectively prevented intestinal epithelial barrier injury caused by lipopolysaccharide (LPS) stimulation. Mechanistically, we demonstrated that IAld activated the aryl hydrocarbon receptor (AhR), subsequently prevented reactive oxygen species (ROS) production, maintained mitochondrial membrane potential, and blocked the NF-κB/NLRP3 inflammatory pathway in intestinal epithelial cells. Also, the AhR-specific inhibitor CH-223191 effectively blocked the IAld-induced NLRP3 inhibition and intestinal epithelial barrier repairment. In addition, in vivo results showed that IAld prevented pro-inflammatory mediator production and intestinal inflammatory damage in LPS-induced mice, which is related to AhR activation and NLRP3 inflammasome inhibition. Collectively, our study unveiled that IAld is an effective endogenous antioxidant and suggested the AhR as a potential treatment target for NLRP3-induced intestinal inflammatory diseases.","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Phytochemicals in Treatment of Aging and Cancer: Focus on Mechanism of FOXO3 Activation 植物化学物质在治疗衰老和癌症中的作用:关注 FOXO3 激活机制
IF 7 2区 医学
Antioxidants Pub Date : 2024-09-11 DOI: 10.3390/antiox13091099
See-Hyoung Park
{"title":"Role of Phytochemicals in Treatment of Aging and Cancer: Focus on Mechanism of FOXO3 Activation","authors":"See-Hyoung Park","doi":"10.3390/antiox13091099","DOIUrl":"https://doi.org/10.3390/antiox13091099","url":null,"abstract":"There have been many studies reporting that the regular consumption of fruits and vegetables is associated with reduced risks of cancer and age-related chronic diseases. Recent studies have demonstrated that reducing reactive oxygen species and inflammation by phytochemicals derived from natural sources can extend lifespans in a range of model organisms. Phytochemicals derived from fruits and vegetables have been known to display both preventative and suppressive activities against various types of cancer via in vitro and in vivo research by interfering with cellular processes critical for tumor development. The current challenge lies in creating tailored supplements containing specific phytochemicals for individual needs. Achieving this goal requires a deeper understanding of the molecular mechanisms through which phytochemicals affect human health. In this review, we examine recently (from 2010 to 2024) reported plant extracts and phytochemicals with established anti-aging and anti-cancer effects via the activation of FOXO3 transcriptional factor. Additionally, we provide an overview of the cellular and molecular mechanisms by which these molecules exert their anti-aging and anti-cancer effects in specific model systems. Lastly, we discuss the limitations of the current research approach and outline for potential future directions in this field.","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Caffeine, Zinc, and Their Combined Treatments on the Growth, Yield, Mineral Elements, and Polyphenols of Solanum lycopersicum L. 咖啡因、锌及其联合处理对番茄茄属植物生长、产量、矿物质元素和多酚的影响
IF 7 2区 医学
Antioxidants Pub Date : 2024-09-11 DOI: 10.3390/antiox13091100
Elena Vichi, Alessandra Francini, Andrea Raffaelli, Luca Sebastiani
{"title":"Effects of Caffeine, Zinc, and Their Combined Treatments on the Growth, Yield, Mineral Elements, and Polyphenols of Solanum lycopersicum L.","authors":"Elena Vichi, Alessandra Francini, Andrea Raffaelli, Luca Sebastiani","doi":"10.3390/antiox13091100","DOIUrl":"https://doi.org/10.3390/antiox13091100","url":null,"abstract":"(1) Background: The effects of Zn and caffeine as promoters of fruit quality in the Solanum lycopersicum L. cultivar ‘Panarea’ were tested. (2) Methods: During the 56 days of the experiment, plants were treated weekly with 100 mL of 1 mM Zn (Zn), 1 mg L−1 caffeine trimethyl-13C (caffeine), and 1 mM Zn + 1 mg L−1 caffeine trimethyl-13C (Zn + caffeine) and compared to plants that were given tap water (control). (3) Results: Caffeine was taken up by the roots and translocated to the leaves, which positively influenced the number of fruits per plant. After 56 days of treatment, Zn induced a positive increase in tomato dry weight, reducing shoot length (−16.7%) compared to the other treatments. Zn + caffeine had a positive effect on the phenylpropanoid pathway of fruits, and 4-coumaric acid, caffeic acid, and t-ferulic acid were significantly increased, as well as the total antioxidant capacity of the tomatoes. In the flavonoid pathway, only apigenin and luteolin contents were reduced by treatments. The tomatoes showed similar concentrations of the mineral elements Cu, Mn, Fe, Na, Ca, Mg, and K. The Zn and caffeine target hazard quotients were <1, indicating that health risks via the consumption of these tomatoes did not occur. (4) Conclusions: Tomato plants could be irrigated with water containing lower values of Zn, caffeine, and a combination of the two. The treated fruits are rich in antioxidant compounds, such as coumaric acid, caffeic acid, and t-ferulic acid, which are beneficial for human health. No considerable health risks associated with human consumption have been detected.","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quercus infectoria Gall Ethanolic Extract Accelerates Wound Healing through Attenuating Inflammation and Oxidative Injuries in Skin Fibroblasts 槲寄生胆乙醇提取物通过减轻皮肤成纤维细胞的炎症和氧化损伤加速伤口愈合
IF 7 2区 医学
Antioxidants Pub Date : 2024-09-09 DOI: 10.3390/antiox13091094
Suttiwan Wunnoo, Decha Sermwittayawong, Rachanida Praparatana, Supayang Piyawan Voravuthikunchai, Chanawee Jakkawanpitak
{"title":"Quercus infectoria Gall Ethanolic Extract Accelerates Wound Healing through Attenuating Inflammation and Oxidative Injuries in Skin Fibroblasts","authors":"Suttiwan Wunnoo, Decha Sermwittayawong, Rachanida Praparatana, Supayang Piyawan Voravuthikunchai, Chanawee Jakkawanpitak","doi":"10.3390/antiox13091094","DOIUrl":"https://doi.org/10.3390/antiox13091094","url":null,"abstract":"Quercus infectoria Olivier (Fagaceae) nutgall, a traditional Asian medicine, is renowned for its efficacy in treating wounds and skin disorders. Although the gall extract has shown promising results in accelerating wound healing in diabetic animal models, its mechanisms, particularly the effects on redox balance, remain poorly understood. This study aims to investigate the effects and mechanisms of Q. infectoria gall ethanolic extract (QIG) on wound healing in fibroblasts, with a specific emphasis on its modulation of oxidative stress. Hydrogen peroxide (H2O2)-treated L929 cells were used as an in vitro model of oxidation-damaged fibroblasts. QIG exhibited potent antioxidant activity with 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP) assay values of 305.43 ± 7.48, 508.94 ± 15.12, and 442.08 ± 9.41 µM Trolox equivalents (TE)/µg, respectively. Elevated H2O2 levels significantly reduced L929 cell viability, with a 50% lethal concentration of 1.03 mM. QIG mitigated H2O2-induced cytotoxicity in a dose-dependent manner, showing protective effects in pre-, post-, and co-treatment scenarios. QIG significantly reduced H2O2-induced intracellular reactive oxygen species production and inflammation-related gene expression (p < 0.05). Additionally, at 25 µg/mL, QIG remarkably improved wound closure in H2O2-treated L929 cells by approximately 9.4 times compared with the H2O2 treatment alone (p < 0.05). These findings suggest QIG has potential therapeutic applications in wound healing, mediated through the regulation of oxidative stress and inflammatory response.","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
10-Gingerol Increases Antioxidant Enzymes and Attenuates Lipopolysaccharide-Induced Inflammation by Modulating Adipokines in 3T3-L1 Adipocytes 10-姜酚通过调节 3T3-L1 脂肪细胞中的脂肪因子增加抗氧化酶并减轻脂多糖诱导的炎症反应
IF 7 2区 医学
Antioxidants Pub Date : 2024-09-07 DOI: 10.3390/antiox13091093
María Elizabeth Preciado-Ortiz, Erika Martínez-López, José Pedraza-Chaverri, Omar Noel Medina-Campos, Roberto Rodríguez-Echevarría, Samantha Desireé Reyes-Pérez, Juan José Rivera-Valdés
{"title":"10-Gingerol Increases Antioxidant Enzymes and Attenuates Lipopolysaccharide-Induced Inflammation by Modulating Adipokines in 3T3-L1 Adipocytes","authors":"María Elizabeth Preciado-Ortiz, Erika Martínez-López, José Pedraza-Chaverri, Omar Noel Medina-Campos, Roberto Rodríguez-Echevarría, Samantha Desireé Reyes-Pérez, Juan José Rivera-Valdés","doi":"10.3390/antiox13091093","DOIUrl":"https://doi.org/10.3390/antiox13091093","url":null,"abstract":"Background: Obesity increases reactive oxygen species production and alters adipokines levels, resulting in a low-grade chronic inflammation state, which contributes to tissue metabolic dysfunction. 10-gingerol, a phenol present in ginger, has shown potential anti-obesogenic effects in vitro. However, the antioxidant and anti-inflammatory properties of 10-gingerol have not been approached. The aim of this study was to investigate the effects of 10-gingerol on antioxidant enzymes’ expression and adipokine production in 3T3-L1 adipocytes in response to lipopolysaccharide (LPS)-induced inflammation. Methods: 10-gingerol antioxidant capacity was assessed through Oxygen Radical Absorbance Capacity (ORAC) , Ferric Reducing Antioxidant Power (FRAP), and radical scavenging activity of 2,2-diphenyl-2-picrylhydrazyl (DPPH) assays. 3T3-L1 cells were differentiated and stimulated with 100 ng/mL LPSs. Then, 15 µg/mL 10-gingerol was added for 48 h. The mRNA expression and protein abundance of antioxidant enzymes were evaluated by qPCR and Western blot, respectively. Adipokine levels were determined by ELISA. Results: 10-gingerol showed low FRAP and DPPH values but a moderate ORAC value. Moreover, 10-gingerol increased Gpx1 and Sod1 but downregulated Cat expression. Additionally, 10-gingerol significantly increased CAT and GPx1 levels but not SOD-1. Finally, adiponectin and leptin concentrations were increased while resistin and tumor necrosis factor alpha (TNFα) were decreased by 10-gingerol. Conclusions: 10-gingerol presented antioxidant potential by increasing antioxidant enzymes and attenuated LPS-induced inflammation by modulating adipokines in 3T3-L1 adipocytes.","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Actinidia chinensis Planch Ameliorates Photoaging in UVB-Irradiated NIH-3T3 Cells and SKH-1 Hairless Mice by Controlling the Reactive Oxygen Species/AKT Pathway 放线菌通过控制活性氧/AKT 通路改善经 UVB 照射的 NIH-3T3 细胞和 SKH-1 无毛小鼠的光老化现象
IF 7 2区 医学
Antioxidants Pub Date : 2024-09-06 DOI: 10.3390/antiox13091091
Jong-Min Jung, Seo-Young Kim, Oh-Yun Kwon, Seung-Ho Lee
{"title":"Actinidia chinensis Planch Ameliorates Photoaging in UVB-Irradiated NIH-3T3 Cells and SKH-1 Hairless Mice by Controlling the Reactive Oxygen Species/AKT Pathway","authors":"Jong-Min Jung, Seo-Young Kim, Oh-Yun Kwon, Seung-Ho Lee","doi":"10.3390/antiox13091091","DOIUrl":"https://doi.org/10.3390/antiox13091091","url":null,"abstract":"In this study, we evaluated the antiphotoaging properties of Actinidia chinensis Planch (ACP) and the molecular mechanisms underlying its ability to prevent UVB-mediated photoaging. Administration of the ethanolic extract of ACP (EEACP) to the dorsal area of hairless mice effectively ameliorated UVB-mediated wrinkle formation, epidermal thickening, and loss of lipid droplets in the epidermis. Additionally, the UVB-induced loss of collagen content in the epidermis was significantly attenuated in mouse skin treated with EEACP. The expression of procollagen type 1 and metalloproteinase-1a, which are related to collagen content in the epidermis, was restored by EEACP treatment in UVB-irradiated mice and NIH-3T3 mouse skin fibroblast cells. Interestingly, EEACP effectively ameliorated UVB-induced reactive oxygen species overproduction. Furthermore, the activation/phosphorylation of AKT, rather than mitogen-activated protein kinases, has been identified as a major target of EEACP in preventing UVB-mediated photoaging. Additionally, N-(1 deoxy-1-fructosyl) valine and phenethylamine glucuronide were identified as analytical indicators of EEACP using high-performance liquid chromatography/mass spectrometry. These results suggest that EEACP can be developed as a functional natural agent capable of preventing photoaging by attenuating UVB-induced activation of the reactive oxygen species/AKT pathway.","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidative Stress: The Hidden Catalyst Fueling Atherosclerosis and Cardiovascular Disease 氧化应激:助长动脉粥样硬化和心血管疾病的隐藏催化剂
IF 7 2区 医学
Antioxidants Pub Date : 2024-09-06 DOI: 10.3390/antiox13091089
Lorenzo Loffredo, Roberto Carnevale
{"title":"Oxidative Stress: The Hidden Catalyst Fueling Atherosclerosis and Cardiovascular Disease","authors":"Lorenzo Loffredo, Roberto Carnevale","doi":"10.3390/antiox13091089","DOIUrl":"https://doi.org/10.3390/antiox13091089","url":null,"abstract":"Atherosclerosis is a pathological condition characterized by the inflammation of arterial vessels, leading to serious cardiovascular outcomes such as myocardial infarction, stroke, and death [...]","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review of Recent Curcumin Analogues and Their Antioxidant, Anti-Inflammatory, and Anticancer Activities 最新姜黄素类似物及其抗氧化、抗炎和抗癌活性综述
IF 7 2区 医学
Antioxidants Pub Date : 2024-09-06 DOI: 10.3390/antiox13091092
Kirandeep Kaur, Ahmad K. Al-Khazaleh, Deep Jyoti Bhuyan, Feng Li, Chun Guang Li
{"title":"A Review of Recent Curcumin Analogues and Their Antioxidant, Anti-Inflammatory, and Anticancer Activities","authors":"Kirandeep Kaur, Ahmad K. Al-Khazaleh, Deep Jyoti Bhuyan, Feng Li, Chun Guang Li","doi":"10.3390/antiox13091092","DOIUrl":"https://doi.org/10.3390/antiox13091092","url":null,"abstract":"Curcumin, as the main active component of turmeric (Curcuma longa), has been demonstrated with various bioactivities. However, its potential therapeutic applications are hindered by challenges such as poor solubility and bioavailability, rapid metabolism, and pan-assay interference properties. Recent advancements have aimed to overcome these limitations by developing novel curcumin analogues and modifications. This brief review critically assesses recent studies on synthesising different curcumin analogues, including metal complexes, nano particulates, and other curcumin derivatives, focused on the antioxidant, anti-inflammatory, and anticancer effects of curcumin and its modified analogues. Exploring innovative curcumin derivatives offers promising strategies to address the challenges associated with its bioavailability and efficacy and valuable insights for future research directions.","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信