{"title":"A self-assembling protein–DNA complex with an inbuilt DNA release system for quantitative immuno-PCR applications†","authors":"A. E. Sorenson and P. M. Schaeffer","doi":"10.1039/D4SD00225C","DOIUrl":"https://doi.org/10.1039/D4SD00225C","url":null,"abstract":"<p >Site-specific protein : DNA conjugation is gaining increasing importance in detection technologies such as quantitative immuno-PCR (qIPCR). Until now, DNA-binding proteins have been a relatively untapped source of protein : DNA conjugation systems. In <em>Escherichia coli</em>, the biotin protein ligase (BirA) is a biotin-dependent DNA-binding protein that offers a means to connect a protein of interest (POI) with DNA. Here, we explored BirA as a unique on–off protein : DNA connection switch for the production of self-assembling POI : DNA conjugates. Green fluorescent protein (GFP) is a versatile protein tag and reporter, commonly quantified by fluorescence detection. However, low GFP concentrations are challenging to detect and require more sensitive methods. A multitude of high-affinity antibodies are available for capture and detection of GFP as an affinity tag. As such, a well-characterised GFP-tagged BirA (BirA-GFP) was selected for the development and validation of an innovative qIPCR platform technology. The unique principle of this assay involves the assembly of two BirA-GFP with the <em>bioO</em> repressor DNA sequence in the presence of ATP and biotin. The resulting high affinity <em>bioO</em> : BirA-GFP complex can be applied in various formats to detect the presence of anti-GFP IgG as well as GFP immobilised on a surface. Complete release of the quantifiable <em>bioO</em> DNA can easily be achieved by omitting ATP and biotin in the final elution step. The new BirA-based qIPCR assay enabled picomolar (≥10<small><sup>−12</sup></small> M) detection of GFP and anti-GFP IgG as well as their affinity profiling.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 12","pages":" 1976-1983"},"PeriodicalIF":3.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00225c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ludovica Maugeri, Giorgia Fangano, Angelo Ferlazzo, Giuseppe Forte, Antonino Gulino and Salvatore Petralia
{"title":"A DNA biosensor integrating surface hybridization, thermo-responsive coating, laminar-flow technology and localized photothermal effect for efficient electrochemical detection of nucleic acids†","authors":"Ludovica Maugeri, Giorgia Fangano, Angelo Ferlazzo, Giuseppe Forte, Antonino Gulino and Salvatore Petralia","doi":"10.1039/D4SD00288A","DOIUrl":"https://doi.org/10.1039/D4SD00288A","url":null,"abstract":"<p >A hybrid electrochemical DNA biosensor that integrates various technologies, such as laminar flow, surface hybridization, DNA-microarray, thermo-responsive nanocoating and localized photothermal heating, is presented here. A photothermal module based on gold nanostructures photoactivated by a green-light source (532 nm) was developed for easy temperature management. The hybridization product is electrochemically detected by a three-planar-microelectrode system upon dsDNA denaturation. Performances of the hybrid biosensor were investigated by detection of the cDNA target, resulting in a sensitivity of about 2.62 μA nM<small><sup>−1</sup></small> cm<small><sup>−2</sup></small> and a limit of detection of 1.5 nM, as a function of the capture probe sequence. The findings facilitate the integration of multiple technologies, enabling the development of low-cost and point-of-care detection systems for molecular analysis.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 12","pages":" 1966-1975"},"PeriodicalIF":3.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00288a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anjali Sugunan, Anusree V. Rethnakumaran and Mini Mol Menamparambath
{"title":"A review on Ti3C2Tx based nanocomposites for the electrochemical sensing of clinically relevant biomarkers","authors":"Anjali Sugunan, Anusree V. Rethnakumaran and Mini Mol Menamparambath","doi":"10.1039/D4SD00171K","DOIUrl":"https://doi.org/10.1039/D4SD00171K","url":null,"abstract":"<p >Reckoning the significance of next-generation biosensors and point-of-care sensors, scientists are interested in developing superior nanomaterials with advantageous characteristics that can serve as electrode modifiers in the development of functional devices. MXenes are a broad class of two-dimensional metal carbides and nitrides characterized by their exceptional hydrophilicity, high specific surface area, and high conductivity. MXenes and their derived nanocomposites are presently gaining importance as electrode materials for the electrochemical detection of various biomarkers. This review assesses and summarises current notable accomplishments in the concepts, fabrication, and diverse applications of MXene-based nanocomposites for electrochemical monitoring of a variety of clinically relevant biomarkers. Furthermore, an outline of the existing impediments linked to technological advancement is included, accompanied by proposals for further investigation into the issues.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 11","pages":" 1769-1788"},"PeriodicalIF":3.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00171k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingliu Wu, Songjia Luo, Lu Wang, Baolei Dong, Hao Qu and Lei Zheng
{"title":"Detection of SARS-CoV-2 and noroviruses in cold-chain food samples using aptamer-functionalized graphene field-effect transistors†","authors":"Qingliu Wu, Songjia Luo, Lu Wang, Baolei Dong, Hao Qu and Lei Zheng","doi":"10.1039/D4SD00248B","DOIUrl":"https://doi.org/10.1039/D4SD00248B","url":null,"abstract":"<p >Given the susceptibility of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) and Norovirus (NoV) to survive in cold chain food, thereby posing significant public health risks, we present a novel approach for biosensor development utilizing a graphene field-effect transistor (GFET) modified with nucleic acid aptamers. The biosensor's innovative design incorporates 1-pyrenebutyric acid <em>N</em>-hydroxysuccinimide ester (PBASE) as a coupling agent to facilitate the attachment of nucleic acid aptamers onto channel graphene. This modification induces a redistribution of charge on the graphene surface, resulting in a shift of the Dirac point upon target capture by the nucleic acid aptamer. Through this pioneering methodology, we successfully engineered SARS-CoV-2 GFET and NoV GFET biosensors capable of detecting trace amounts of SARS-CoV-2 and norovirus within a rapid 5-minute timeframe, showcasing detection limits of 33 fg mL<small><sup>−1</sup></small> and 6.17 pg mL<small><sup>−1</sup></small>, respectively. Subsequently, we applied these sensors to detect SARS-CoV-2 in frozen meat and norovirus in shellfish, yielding promising results with excellent specificity and stability. This groundbreaking sensing mechanism holds significant promise for the detection of foodborne viruses across a diverse range of food samples.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 12","pages":" 1947-1956"},"PeriodicalIF":3.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00248b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Ferrer Pascual, Eero Gustafsson, Juha Siitonen, Vasuki Durairaj and Tomi Laurila
{"title":"Challenges in aptamer-based sensor development using carbon nanotube networks†","authors":"Laura Ferrer Pascual, Eero Gustafsson, Juha Siitonen, Vasuki Durairaj and Tomi Laurila","doi":"10.1039/D4SD00250D","DOIUrl":"https://doi.org/10.1039/D4SD00250D","url":null,"abstract":"<p >Electrochemical aptamer-based (EAB) sensors represent a promising biosensing platform, leveraging the selectivity of aptamers and the advantages of electrochemical methods. These sensors offer high sensitivity, rapid response, low limits of detection, cost-effectiveness, and miniaturization potential. While gold electrodes have been predominantly used in EAB sensors, alternatives such as carbon nanotubes (CNTs) are gaining attention. CNTs offer advantages like large surface area and conductivity but pose challenges due to their reactivity and 3D network structure. In this study, we explore the development of EAB sensors using single-wall carbon nanotube (SWCNT) networks, emphasizing on the challenges and electroanalytical insights. Three key electrochemical parameters are proposed for assessing EAB sensor performance: (i) variations in peak current, (ii) shifts in peak position, and (iii) the restoration of the background current. Focusing solely on peak current changes can be misleading, as factors like aptamer surface depletion can influence it. Additionally, both partial and integrated currents should be monitored in square wave voltammetry (SWV) analysis, considering both ON and OFF behaviours across frequencies. This comprehensive approach provides a preliminary assessment of successful binding and surface passivation in EAB sensors when combined with surface analytical techniques such as surface plasmon resonance (SPR) measurements.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 12","pages":" 1935-1946"},"PeriodicalIF":3.5,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00250d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sankarasekaran Shanmugaraju, Robert B. P. Elmes and Valeria Amendola
{"title":"Introduction to Supramolecular Sensors: From Molecules to Materials","authors":"Sankarasekaran Shanmugaraju, Robert B. P. Elmes and Valeria Amendola","doi":"10.1039/D4SD90034K","DOIUrl":"https://doi.org/10.1039/D4SD90034K","url":null,"abstract":"<p >A graphical abstract is available for this content</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 11","pages":" 1767-1768"},"PeriodicalIF":3.5,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd90034k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comprehensive FTIR micro-spectroscopic analysis and classification of precancerous human oral tissue aided by machine learning†","authors":"Pranab Jyoti Talukdar, Kartikeya Bharti, Sumita Banerjee, Sautami Basu, Sanjeet Kumar Das, Ranjan Rashmi Paul, Mousumi Pal, Mahendra Prasad Mishra, Saikat Mukherjee, Pooja Lahiri and Basudev Lahiri","doi":"10.1039/D4SD00122B","DOIUrl":"https://doi.org/10.1039/D4SD00122B","url":null,"abstract":"<p >We present an analysis of the molecular vibrational assessments of different grades of oral precancerous tissue sections, aiming to an early, alternative method other than histopathology to definitively distinguish their grades and remove the interobserver variability related to histopathological grading. Assessment of the prognosis of oral potentially malignant disorders (OPMDs) is dependent only on clinical features, and no defined criteria are still proposed to analyze the treatment outcome. Chair-side analysis of the lymph node metastasis and staging of oral squamous cell carcinoma (OSCC) is also dependent on palpatory findings followed by magnetic resonance imaging (MRI). Among these, Fourier-transform infrared (FTIR) micro-spectroscopy emerges as a highly promising and versatile approach for analyzing oral cancer and precancer specimens, enabling the identification of chemical and molecular changes in tissue samples. In this work, an adequate number of tissue sections affected by different grades of precancer (mild dysplasia, moderate dysplasia, and severe dysplasia) were investigated for biochemical changes in the epithelium and sub-epithelium layers as characterized by their corresponding molecular vibration spectrum. The current study demonstrated distinct alterations based on the spectrum shift of proteins (particularly amide I and amide III) over the progression of precancer. Additionally, using the amide I and amide III regions, a peak fitting method was employed to estimate the secondary structures of proteins. Further, chemometric techniques of principal components analysis–linear discriminant analysis (PCA–LDA) were used to create discrimination models for the precancerous and control groups. Our investigation revealed that the predictive performance of the amide III region was better than that of the amide I region, achieving a 95% accuracy rate. To the best of our knowledge, this is one of the first studies on the application of FTIR micro-spectroscopy for the classification of oral precancers in humans, aided by machine learning.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 11","pages":" 1854-1865"},"PeriodicalIF":3.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00122b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Repale Anil Vithal, Ram Kishore, Dongare Suvarna Janardan, N. S. Chundawat, Nitin Srivastava and Girdhar Pal Singh
{"title":"Novel thiosemicarbazone based sensors for transition metals†","authors":"Repale Anil Vithal, Ram Kishore, Dongare Suvarna Janardan, N. S. Chundawat, Nitin Srivastava and Girdhar Pal Singh","doi":"10.1039/D4SD00266K","DOIUrl":"https://doi.org/10.1039/D4SD00266K","url":null,"abstract":"<p >A novel and efficient thiosemicarbazone based chemosensor for the detection of transition metals through UV-visible fluorescence has been reported in this research. Dibenzyl thiosemicarbazones can bind with the transition metal ions and lead to the enhancement of the fluorescence. The reported dibenzyl thiosemicarbazone can detect Zn<small><sup>2+</sup></small>, Co<small><sup>2+</sup></small>, Ni<small><sup>2+</sup></small> and Hg<small><sup>2+</sup></small> appreciably due to inhibition of electron transfer while quenching of fluorescence occurs in Mn<small><sup>2+</sup></small> and Cu<small><sup>2+</sup></small> due to photoinduced electron transfer.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 11","pages":" 1822-1826"},"PeriodicalIF":3.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00266k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Citra Dewi Rakhmania, Yoshi Izzuddin Azhar, Kenji Shida, Erika Shinchi, Taiki Adachi, Keisei Sowa, Yuki Kitazumi, Osamu Shirai and Masato Tominaga
{"title":"Highly sensitive flux-type non-invasive alcohol biosensor based on direct electron transfer of PQQ-dependent alcohol dehydrogenases adsorbed on carbon nanotubes†","authors":"Citra Dewi Rakhmania, Yoshi Izzuddin Azhar, Kenji Shida, Erika Shinchi, Taiki Adachi, Keisei Sowa, Yuki Kitazumi, Osamu Shirai and Masato Tominaga","doi":"10.1039/D4SD00161C","DOIUrl":"https://doi.org/10.1039/D4SD00161C","url":null,"abstract":"<p >Ethanol gas excreted by human skin can be used to determine auto-brewery syndrome (drunken disease), blood alcohol levels, and/or a body state of alcoholism. Considering the limitations of continuous non-invasive alcohol gas monitoring based on the electrochemical method, which requires high sensitivity and selectivity, a CNF film sensor was developed. This sensor was developed by utilizing pyrroloquinoline quinone-dependent alcohol dehydrogenase (PQQ-ADH) and multiwalled carbon nanotubes (MWCNTs) based on cellulose nanofiber (CNF) film platform. With a compact design, a PQQ-ADH/MWCNTs/CNF film sensor was built in a three-electrode system. This system could continuously detect ethanol gas with ultra-high sensitivity, a wide detection range (24 ppb–25 ppm), and high selectivity for ethanol. Finally, the CNF film sensor was used for ethanol gas monitoring in the human subject, and we were able to detect metabolism abnormalities of the subject by analyzing the declining slope (detoxification rate) of the ethanol gas concentration monitored. The CNF film sensor aims to gain valuable insights and enhance future standard health screening practices through non-invasive wearable daily monitoring sensors.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 11","pages":" 1827-1834"},"PeriodicalIF":3.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00161c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atanu Maji, Debarpan Mitra, Amitav Biswas, Moumita Ghosh, Rahul Naskar, Saswati Gharami Nabendu Murmu and Tapan K. Mondal
{"title":"Modulation of the binding sites for an adaptable DNA interactive probe: efficient chromo-fluorogenic recognition of Al3+ and live cell bioimaging†","authors":"Atanu Maji, Debarpan Mitra, Amitav Biswas, Moumita Ghosh, Rahul Naskar, Saswati Gharami Nabendu Murmu and Tapan K. Mondal","doi":"10.1039/D4SD00242C","DOIUrl":"10.1039/D4SD00242C","url":null,"abstract":"<p >Herein, a chromone-based simple reversible fluorescent “turn-on” probe, HMCP [6-(hydroxymethyl)-<em>N</em>′-((6-methyl-4-oxo-4<em>H</em>-chromen-3-yl)methylene)picolinohydrazide], was successfully utilized to detect Al<small><sup>3+</sup></small> over a group of other coexisting metal cations in MeOH/H<small><sub>2</sub></small>O (9 : 1, v/v) (HEPES buffer, pH = 7.2). The “turn on” emission response along with the effective enhancement of the fluorescence intensity upon addition of Al<small><sup>3+</sup></small> can be attributed to the inhibition of photo-induced electron transfer (PET) and C<img>N isomerization, as well as the initiation of chelation-enhanced-fluorescence (CHEF). The HMCP sensor binds Al<small><sup>3+</sup></small> in a 1 : 1 stoichiometry with an excellent binding constant and good detection limit on the orders of 10<small><sup>3</sup></small> M<small><sup>−1</sup></small> and 10<small><sup>−7</sup></small> M, respectively. The mode of binding interaction between HMCP with Al<small><sup>3+</sup></small> was evidenced by <small><sup>1</sup></small>H NMR titration, HRMS, and Job's plot analyses. Theoretical calculations and molecular logic gate applications were also used to demonstrate the binding mode. A DNA binding study was also executed to elucidate the possible bioactivity of the probe and found that HMCP interacts with DNA more effectively than the other analogues studied. Furthermore, the applicability of the probe in a live cell imaging study indicated that HMCP is highly efficient for the detection of exogenous Al<small><sup>3+</sup></small> in living cells. In addition, real water sample analysis and a dip-stick experiment demonstrate that the probe can be used in a wide range of practical and convenient applications.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 11","pages":" 1866-1876"},"PeriodicalIF":3.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00242c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}