Computationally predicting the performance of gas sensor arrays for anomaly detection†

IF 3.5 Q2 CHEMISTRY, ANALYTICAL
Paul Morris and Cory M. Simon
{"title":"Computationally predicting the performance of gas sensor arrays for anomaly detection†","authors":"Paul Morris and Cory M. Simon","doi":"10.1039/D4SD00121D","DOIUrl":null,"url":null,"abstract":"<p >In many gas sensing tasks, we simply wish to become aware of gas compositions that deviate from normal, “business-as-usual” conditions. We provide a methodology, illustrated by example, to computationally predict the performance of a gas sensor array design for detecting anomalous gas compositions. Specifically, we consider a sensor array of two zeolitic imidazolate frameworks (ZIFs) as gravimetric sensing elements for detecting anomalous gas compositions in a fruit ripening room. First, we define the probability distribution of the concentrations of the key gas species (CO<small><sub>2</sub></small>, C<small><sub>2</sub></small>H<small><sub>4</sub></small>, H<small><sub>2</sub></small>O) we expect to encounter under normal conditions. Next, we construct a thermodynamic model to predict gas adsorption in the ZIF sensing elements in response to these gas compositions. Then, we generate a synthetic training data set of sensor array responses to “normal” gas compositions. Finally, we train a support vector data description to flag anomalous sensor array responses and test its false alarm and missed-anomaly rates under conceived anomalies. We find the performance of the anomaly detector diminishes with (i) greater variance in humidity, which can mask CO<small><sub>2</sub></small> and C<small><sub>2</sub></small>H<small><sub>4</sub></small> anomalies or cause false alarms, (ii) higher levels of noise emanating from the transducers, and (iii) smaller training data sets. Our exploratory study is a step towards computational design of gas sensor arrays for anomaly detection.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1699-1713"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00121d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors & diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sd/d4sd00121d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In many gas sensing tasks, we simply wish to become aware of gas compositions that deviate from normal, “business-as-usual” conditions. We provide a methodology, illustrated by example, to computationally predict the performance of a gas sensor array design for detecting anomalous gas compositions. Specifically, we consider a sensor array of two zeolitic imidazolate frameworks (ZIFs) as gravimetric sensing elements for detecting anomalous gas compositions in a fruit ripening room. First, we define the probability distribution of the concentrations of the key gas species (CO2, C2H4, H2O) we expect to encounter under normal conditions. Next, we construct a thermodynamic model to predict gas adsorption in the ZIF sensing elements in response to these gas compositions. Then, we generate a synthetic training data set of sensor array responses to “normal” gas compositions. Finally, we train a support vector data description to flag anomalous sensor array responses and test its false alarm and missed-anomaly rates under conceived anomalies. We find the performance of the anomaly detector diminishes with (i) greater variance in humidity, which can mask CO2 and C2H4 anomalies or cause false alarms, (ii) higher levels of noise emanating from the transducers, and (iii) smaller training data sets. Our exploratory study is a step towards computational design of gas sensor arrays for anomaly detection.

Abstract Image

Abstract Image

计算预测气体传感器阵列的异常检测性能
在许多气体传感任务中,我们只是希望了解偏离正常 "常规 "条件的气体成分。我们提供了一种方法,以实例说明如何通过计算预测气体传感器阵列设计的性能,以检测异常气体成分。具体来说,我们考虑将两个沸石咪唑框架(ZIF)作为重力感应元件的传感器阵列,用于检测水果成熟室中的异常气体成分。首先,我们定义了在正常条件下预计会遇到的主要气体种类(CO2、C2H4、H2O)浓度的概率分布。接着,我们构建了一个热力学模型,以预测 ZIF 传感元件对这些气体成分的吸附情况。然后,我们生成传感器阵列对 "正常 "气体成分响应的合成训练数据集。最后,我们对支持向量数据描述进行训练,以标记异常传感器阵列响应,并测试其在设想异常情况下的误报率和漏报率。我们发现,在以下情况下,异常检测器的性能会下降:(i) 湿度变化较大,这可能会掩盖 CO2 和 C2H4 异常或导致误报;(ii) 传感器发出的噪声水平较高;(iii) 训练数据集较小。我们的探索性研究为异常检测气体传感器阵列的计算设计迈出了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信