Nature waterPub Date : 2024-10-24DOI: 10.1038/s44221-024-00330-6
Wenguang Wang, Lu Shao
{"title":"Lithium extraction with energy generation","authors":"Wenguang Wang, Lu Shao","doi":"10.1038/s44221-024-00330-6","DOIUrl":"10.1038/s44221-024-00330-6","url":null,"abstract":"Traditional techniques for lithium extraction require considerable energy consumption. A spontaneous process with net energy output driven by counterion gradients presents a promising solution for energetically efficient lithium extraction and enrichment from brine.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 11","pages":"1051-1052"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature waterPub Date : 2024-10-24DOI: 10.1038/s44221-024-00326-2
Ge Zhang, Yuqi Li, Xun Guan, Guoliang Hu, Hance Su, Xueer Xu, Guangxia Feng, Sanzeeda Baig Shuchi, Sang Cheol Kim, Jiawei Zhou, Rong Xu, Xin Xiao, Allen Wu, Yi Cui
{"title":"Spontaneous lithium extraction and enrichment from brine with net energy output driven by counter-ion gradients","authors":"Ge Zhang, Yuqi Li, Xun Guan, Guoliang Hu, Hance Su, Xueer Xu, Guangxia Feng, Sanzeeda Baig Shuchi, Sang Cheol Kim, Jiawei Zhou, Rong Xu, Xin Xiao, Allen Wu, Yi Cui","doi":"10.1038/s44221-024-00326-2","DOIUrl":"10.1038/s44221-024-00326-2","url":null,"abstract":"To meet the increasing lithium demands created by global electrification, a fast, flexible, inexpensive and sustainable mining process is needed, which is yet to be realized. Here we explore an untapped energy source that is inherent in all ion-separation processes to achieve spontaneous Li extraction with net energy production. The driving force comes from the huge concentration difference of counter ions (usually chloride) between the feeding and receiving solutions. Experimental results under various feeding compositions can be well explained by the Gibbs–Donnan equilibrium. Utilizing a Li-selective ceramic membrane and a chloride-storing silver electrode, we successfully achieved Li extraction from simulated brine with an energy output of 1.6 Wh molLi−1. The system is stable over 300 hours of operation, maintaining a high Li/Mg selectivity of 450. Moreover, even spontaneous enrichment can be achieved when the counter ion concentration is much greater than that of Li ion in the feeding brine. We anticipate that the concept of this work could not only reshape the Li supply chain but also seed a fundamental transformation of all ion-separation processes. Utilizing the immense osmotic energy in membrane separation processes enables spontaneous lithium extraction while generating net energy, offering a promising method for carbon-negative resource recovery.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 11","pages":"1091-1101"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature waterPub Date : 2024-10-24DOI: 10.1038/s44221-024-00323-5
Shouzhang Peng, César Terrer, Benjamin Smith, Philippe Ciais, Qinggong Han, Jialan Nan, Joshua B. Fisher, Liang Chen, Lei Deng, Kailiang Yu
{"title":"Carbon restoration potential on global land under water resource constraints","authors":"Shouzhang Peng, César Terrer, Benjamin Smith, Philippe Ciais, Qinggong Han, Jialan Nan, Joshua B. Fisher, Liang Chen, Lei Deng, Kailiang Yu","doi":"10.1038/s44221-024-00323-5","DOIUrl":"10.1038/s44221-024-00323-5","url":null,"abstract":"Ecosystem restoration is a critical nature-based solution to mitigate climate change. However, the carbon sequestration potential of restoration, defined as the maximum achievable carbon storage, has likely been overestimated because previous studies have not adequately accounted for the competition between ecosystem water demands for maximizing carbon sequestration and human water needs. Here we used a comprehensive process-based model combined with extensive land-use data and evaporation recycling accounting for land–atmosphere feedback to estimate the water requirements associated with ecosystem restoration. We found that achieving the carbon sequestration potential of restoration would significantly reduce global water availability per capita by 26%, posing considerable risks to water security in water-stressed and highly populated regions. If human water use is safeguarded, the achievable carbon sequestration potential would be reduced by a third (from 396 PgC to 270 PgC). Brazil, the United States and Russia have the largest achievable potentials. Future projections accounting for changes in climate, atmospheric CO2, land use and human population under the shared socioeconomic pathway (SSP) scenarios SSP119, SSP245 and SSP585 suggest an increase in this achievable potential to 274–302 PgC by the end of the century, with China expected to have the largest potential. Our findings provide a nuanced understanding of the trade-offs and synergies between carbon sequestration goals and water security, offering an empirical framework to guide the sustainable implementation of ecosystem restoration strategies. This study provides a nuanced understanding of the trade-offs and synergies between carbon sequestration goals and water security, and offers a data–model integrated framework to guide ecosystem restoration strategies under water resource constraints.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 11","pages":"1071-1081"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature waterPub Date : 2024-10-24DOI: 10.1038/s44221-024-00328-0
Adriaan J. Teuling
{"title":"Global ecosystem restoration and water resources availability","authors":"Adriaan J. Teuling","doi":"10.1038/s44221-024-00328-0","DOIUrl":"10.1038/s44221-024-00328-0","url":null,"abstract":"Detailed simulations reveal where landscape-scale carbon restoration would have least, or even beneficial, impacts on water resources.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 11","pages":"1055-1056"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature waterPub Date : 2024-10-18DOI: 10.1038/s44221-024-00335-1
{"title":"The tortuous path towards net zero emissions in the wastewater sector","authors":"","doi":"10.1038/s44221-024-00335-1","DOIUrl":"10.1038/s44221-024-00335-1","url":null,"abstract":"Research and development in the wastewater sector have shown that offsetting greenhouse gas emissions through improved efficiency and resource recovery is possible, but efforts beyond science and engineering are necessary to achieve net zero.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 10","pages":"911-911"},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44221-024-00335-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature waterPub Date : 2024-10-14DOI: 10.1038/s44221-024-00307-5
Tao Liu, Haoran Duan, Sebastian Lücker, Min Zheng, Holger Daims, Zhiguo Yuan, Jianhua Guo
{"title":"Sustainable wastewater management through nitrogen-cycling microorganisms","authors":"Tao Liu, Haoran Duan, Sebastian Lücker, Min Zheng, Holger Daims, Zhiguo Yuan, Jianhua Guo","doi":"10.1038/s44221-024-00307-5","DOIUrl":"10.1038/s44221-024-00307-5","url":null,"abstract":"Nitrogen-cycling microorganisms play essential roles in biological wastewater treatment, where nitrogen is removed with substantial energy and chemical consumption and greenhouse gas emissions. The discoveries of new nitrogen-cycling microorganisms paved the way for a remarkable paradigm shift from energy-negative and carbon-positive to energy-positive and carbon-neutral wastewater management. This Review reflects on the trajectory of these microbial discoveries and summarizes the technological progress enabled by them thus far. By bridging the gap between environmental microbiologists and water engineers, who are both interested in these new nitrogen-cycling microorganisms but with different focuses and expertise, this Review acknowledges the challenges encountered and illuminates the exciting future ahead. The continued close collaboration between scientists and engineers will keep redefining the landscape of wastewater management. This Review highlights how the discovery of new nitrogen-cycling microorganisms paves the way for process iterations and technological innovations towards sustainable wastewater management.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 10","pages":"936-952"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature waterPub Date : 2024-10-10DOI: 10.1038/s44221-024-00318-2
Cuihong Song, Jun-Jie Zhu, Zhiguo Yuan, Mark C. M. van Loosdrecht, Zhiyong Jason Ren
{"title":"Defining and achieving net-zero emissions in the wastewater sector","authors":"Cuihong Song, Jun-Jie Zhu, Zhiguo Yuan, Mark C. M. van Loosdrecht, Zhiyong Jason Ren","doi":"10.1038/s44221-024-00318-2","DOIUrl":"10.1038/s44221-024-00318-2","url":null,"abstract":"Here we delve into the challenges and innovative strategies for achieving net-zero emissions in the wastewater sector, a notable source of global greenhouse gases. Unlike other infrastructure sectors, wastewater management involves complex and variably quantifiable emissions across all scopes, making standardization difficult. This study provides a global overview of the sector’s emissions profiles by leveraging literature mining, data analysis and case studies. It emphasizes the substantial variability in emissions, identifies key emission sources and locations, and advocates for tailored monitoring and mitigation strategies. It highlights the potential emissions shifting across scopes due to the adoption of new technologies and accounting practices, and it argues for a holistic analysis for optimization and integration to ensure a net benefit of the overall reductions in carbon footprints. This study underscores the urgency of rethinking current practices to align with ambitious mid-century net-zero targets, emphasizing the critical role of accurate emissions quantification and comprehensive decarbonization strategies. This Review offers a comprehensive global overview of greenhouse gas emissions in the wastewater sector, highlighting key gaps in emission quantification and mitigation. It explores current decarbonization strategies, emphasizes the complexity of emissions across all scopes, and advocates for tailored monitoring, holistic analysis and strong support from different stakeholders to drive effective mitigation and achieve net-zero emissions.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 10","pages":"927-935"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature waterPub Date : 2024-10-08DOI: 10.1038/s44221-024-00320-8
Xiang-Yu Kong, Liping Wen
{"title":"Photovoltaic electrodialysis makes brackish water treatment simpler","authors":"Xiang-Yu Kong, Liping Wen","doi":"10.1038/s44221-024-00320-8","DOIUrl":"10.1038/s44221-024-00320-8","url":null,"abstract":"Desalination of brackish groundwater at the community scale could be realized in resource-constrained communities through the use of photovoltaic electrodialysis. Here a flow-commanded current-flow strategy is described.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 10","pages":"925-926"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature waterPub Date : 2024-10-08DOI: 10.1038/s44221-024-00321-7
Christopher G. Arges
{"title":"Reinventing the electrochemical desalination platform","authors":"Christopher G. Arges","doi":"10.1038/s44221-024-00321-7","DOIUrl":"10.1038/s44221-024-00321-7","url":null,"abstract":"Electrochemical ion pumping that continuously removes ions from feed streams by circuit-switch-induced ion shuttling provides a potentially more practical and energy-efficient approach to electrochemical desalination.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 10","pages":"923-924"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature waterPub Date : 2024-10-08DOI: 10.1038/s44221-024-00314-6
Jonathan Tae-Yoon Bessette, Shane Richard Pratt, Amos G. Winter V
{"title":"Direct-drive photovoltaic electrodialysis via flow-commanded current control","authors":"Jonathan Tae-Yoon Bessette, Shane Richard Pratt, Amos G. Winter V","doi":"10.1038/s44221-024-00314-6","DOIUrl":"10.1038/s44221-024-00314-6","url":null,"abstract":"Renewable powered, brackish groundwater desalination is an underutilized resource in the developing world, where there are unreliable energy sources and reliance on increasingly saline groundwater. Traditional renewable desalination technologies require sizable energy storage for sufficient water production, leading to increased cost, maintenance and complexity. We theorize and demonstrate a simple control strategy—flow-commanded current control—using photovoltaic electrodialysis (PV-ED) to enable direct-drive (little to no energy storage), optimally controlled desalination at high production rates. This control scheme was implemented on a fully autonomous, community-scale (2–5 m3 d−1) PV-ED prototype system and operated for 6 months in New Mexico on real brackish groundwater. The prototype fully harnessed 94% of the extracted PV energy despite featuring an energy storage to water productivity ratio of over 99% less than the median PV desalination systems in literature. Flow-commanded current control PV-ED provides a simple strategy to desalinate water for resource-constrained communities and has implications for decarbonizing larger, energy-intensive desalination industries. Desalination of brackish water powered by renewable energy sources is a promising approach to obtain clean water in environmentally constrained communities, but high energy storage requirements hamper its development. Direct-drive photovoltaic electrodialysis is now shown to efficiently produce desalinated water while requiring minimal energy storage.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 10","pages":"1019-1027"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44221-024-00314-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}