Floc management enables integrated anammox and enhanced biological phosphorus removal for sustainable ultra-efficient nutrient removal

Qiongpeng Dan, Qiong Zhang, Tong Wang, Hanbin Wang, Yongzhen Peng
{"title":"Floc management enables integrated anammox and enhanced biological phosphorus removal for sustainable ultra-efficient nutrient removal","authors":"Qiongpeng Dan, Qiong Zhang, Tong Wang, Hanbin Wang, Yongzhen Peng","doi":"10.1038/s44221-024-00380-w","DOIUrl":null,"url":null,"abstract":"Nutrient removal from wastewater is crucial for global wastewater recycling and sustainable reuse. However, traditional methods for nitrogen and phosphorus removal face limitations in terms of energy consumption, operational complexity and environmental impact. Here we develop a floc management strategy to integrate anammox and enhanced biological phosphorus removal (EBPR) processes in a single-stage hybrid system (biofilms and flocs). This integrated approach resolves the conflicts between anammox and EBPR processes concerning ecological niche and solid retention time, enabling ultraefficient nitrogen and phosphorus removal efficiencies of 97.7 ± 1.3% and 97.4 ± 0.7%, respectively, in low-carbon municipal wastewater treatment. Notably, anammox benefitted from substrate competition with endogenous denitrification (both nitrite and nitrate) with floc loss, resulting in a significant enrichment of anammox bacteria in biofilms (12.5%) under mainstream conditions. Meanwhile, controlling floc concentrations at around 1,000 mg l−1 could maintain low polyphosphate levels in flocs, effectively addressing the additional phosphorus removal burden imposed by the enrichment of phosphorus-accumulating organisms in biofilms. This work offers a transformative solution to the long-standing challenge of integrating anammox and EBPR, paving the way for more sustainable and energy-efficient nutrient removal in wastewater treatment. The enhanced removal of nitrogen and phosphorus is realized by floc management in an integrated system of anammox and enhanced biological phosphorus removal.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 2","pages":"201-210"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature water","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44221-024-00380-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nutrient removal from wastewater is crucial for global wastewater recycling and sustainable reuse. However, traditional methods for nitrogen and phosphorus removal face limitations in terms of energy consumption, operational complexity and environmental impact. Here we develop a floc management strategy to integrate anammox and enhanced biological phosphorus removal (EBPR) processes in a single-stage hybrid system (biofilms and flocs). This integrated approach resolves the conflicts between anammox and EBPR processes concerning ecological niche and solid retention time, enabling ultraefficient nitrogen and phosphorus removal efficiencies of 97.7 ± 1.3% and 97.4 ± 0.7%, respectively, in low-carbon municipal wastewater treatment. Notably, anammox benefitted from substrate competition with endogenous denitrification (both nitrite and nitrate) with floc loss, resulting in a significant enrichment of anammox bacteria in biofilms (12.5%) under mainstream conditions. Meanwhile, controlling floc concentrations at around 1,000 mg l−1 could maintain low polyphosphate levels in flocs, effectively addressing the additional phosphorus removal burden imposed by the enrichment of phosphorus-accumulating organisms in biofilms. This work offers a transformative solution to the long-standing challenge of integrating anammox and EBPR, paving the way for more sustainable and energy-efficient nutrient removal in wastewater treatment. The enhanced removal of nitrogen and phosphorus is realized by floc management in an integrated system of anammox and enhanced biological phosphorus removal.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信