Decoupling of surface water storage from precipitation in global drylands due to anthropogenic activity

Gang Zhao, Huilin Gao, Yao Li, Qiuhong Tang, R. Iestyn Woolway, Julian Merder, Lorenzo Rosa, Anna M. Michalak
{"title":"Decoupling of surface water storage from precipitation in global drylands due to anthropogenic activity","authors":"Gang Zhao, Huilin Gao, Yao Li, Qiuhong Tang, R. Iestyn Woolway, Julian Merder, Lorenzo Rosa, Anna M. Michalak","doi":"10.1038/s44221-024-00367-7","DOIUrl":null,"url":null,"abstract":"The availability of surface water in global drylands is essential for both human society and ecosystems. However, the long-term drivers of change in surface water storage, particularly those related to anthropogenic activities, remain unclear. Here we use multi-mission remote sensing data to construct monthly time series of water storage changes from 1985 to 2020 for 105,400 lakes and reservoirs in global drylands. An increase of 2.20 km3 per year in surface water storage is found primarily due to the construction of new reservoirs. For lakes and old reservoirs (constructed before 1983), conversely, the trend in storage is minor when aggregated globally, but they dominate surface water storage trends in 91% of individual global dryland basins. Further analysis reveals that long-term storage changes in these water bodies are primarily linked to anthropogenic factors—including human-induced warming and water-management practices—rather than to precipitation changes, as previously thought. These findings reveal a decoupling of surface water storage from precipitation in global drylands, raising concerns about societal and ecosystem sustainability. This study quantifies and attributes the changes of surface water storage in global dryland basins over 1985–2020, indicating that long-term changes are mainly linked to anthropogenic factors rather than precipitation.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 1","pages":"80-88"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44221-024-00367-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature water","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44221-024-00367-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The availability of surface water in global drylands is essential for both human society and ecosystems. However, the long-term drivers of change in surface water storage, particularly those related to anthropogenic activities, remain unclear. Here we use multi-mission remote sensing data to construct monthly time series of water storage changes from 1985 to 2020 for 105,400 lakes and reservoirs in global drylands. An increase of 2.20 km3 per year in surface water storage is found primarily due to the construction of new reservoirs. For lakes and old reservoirs (constructed before 1983), conversely, the trend in storage is minor when aggregated globally, but they dominate surface water storage trends in 91% of individual global dryland basins. Further analysis reveals that long-term storage changes in these water bodies are primarily linked to anthropogenic factors—including human-induced warming and water-management practices—rather than to precipitation changes, as previously thought. These findings reveal a decoupling of surface water storage from precipitation in global drylands, raising concerns about societal and ecosystem sustainability. This study quantifies and attributes the changes of surface water storage in global dryland basins over 1985–2020, indicating that long-term changes are mainly linked to anthropogenic factors rather than precipitation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信